diff --git a/RCleanDscret.R b/RCleanDscret.R new file mode 100644 index 0000000..2b9666c --- /dev/null +++ b/RCleanDscret.R @@ -0,0 +1,445 @@ +#Libraries required to run the code +library(pryr) +library(MASS) +library(dplyr) +library(tidyr) +library(readr) +library(stringr) + + +#Necessary Functions +#1#Function for handling the changing of row names and column names +chngrownm <- function(mat){ + row <- dim(mat)[1] + col <- dim(mat)[2] + j <- 1 + x <- 1 + p <- 1 + a <- 1 + b <- 1 + g <- 1 + for(j in 1:col){ + if("!Sample_source_name_ch1"==mat[1,j]){ + colnames(mat)[j] <- "Brain_Region" + } + if("!Sample_title" == mat[1,j]){ + colnames(mat)[j] <- "Title" + } + if("!Sample_geo_accession" == mat[1,j]){ + colnames(mat)[j] <- "ID_REF" + } else{ + if(grepl("Sex|gender|Gender|sex",mat[2,j])==TRUE){ + colnames(mat)[j] <- paste0("Sex",x) + x = x + 1 + } + if(grepl("postmorteminterval|PMI|pmi",mat[2,j])==TRUE){ + colnames(mat)[j] <- paste0("PMI",p) + p = p + 1 + } + if(grepl("age|Age|AGE",mat[2,j])==TRUE){ + colnames(mat)[j] <- paste0("Age",a) + a = a + 1 + } + if(grepl("braak|b&b",mat[2,j])==TRUE){ + colnames(mat)[j] <- paste0("Braak",b) + b = b + 1 + } + if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control",mat[2,j])==TRUE){ + colnames(mat)[j] <- paste0("Group",g) + g = g + 1 + } + + } + j = j + 1 + } + mat +} + +#2#Function for reorganizing information within the columns +cinfo <- function(mat){ + col <- dim(mat)[2] + j <-2 + for(j in 2:col){ + if(grepl("Group",colnames(mat)[j]) == TRUE){ + mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) + } + if(grepl("Age",colnames(mat)[j])==TRUE){ + mat[,j] <- gsub("\\D","",mat[,j])%>% + as.integer() + } + if(grepl("Sex",colnames(mat)[j])==TRUE){ + mat[,j] <- gsub(".+:\\s","",mat[,j]) + } + if(grepl("PMI",colnames(mat)[j])==TRUE){ + mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% + as.numeric() + } + if(grepl("Braak",colnames(mat)[j])==TRUE){ + mat[,j]<-gsub(".+:\\s","",mat[,j])%>% + as.roman()%>% + as.integer() + } + j=j+1 + } + mat +} + +#3#Function for labeling the gene IDs without names +NAFIXING <- function(GIDNAM){ + row <- dim(GIDNAM)[1] + i <- 1 + for(i in 1:row){ + if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ + GIDNAM[i,2] <- GIDNAM[i,1] + } + i <- i + 1 + } + GIDNAM +} + +#4#Function for changing the gene ID to gene name +cgeneID <- function(GeneName,DATA){ + colGene <- dim(GeneName)[2] + j <- 1 + for(j in 1:colGene){ + chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) + if(is.na(sum(chngsreq))==FALSE){ + if(sum(chngsreq) > 0){ + DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) + } + } + #if(sum(chngsreq) > 0){ + ##DATA[1,chngsreq] <- gsub(GeneName[1,j],GeneName[2,j],DATA[1,chngsreq]) + #DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) + #} + j = j+1 + } + DATA +} + +#5#Function for adjusting the gene names +gcnames <- function(DiData,usecol=1){ + nuruns <- dim(DiData)[2] + i = 1 + nwnam <- rep("0",length.out=nuruns) + for(i in 1:nuruns){ + if(length(strsplit(colnames(DiData)[i],"///")[[1]]) >= usecol){ + nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][usecol]) + } else{ + nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][1]) + } + + } + nwnam + +} + +#6# Function for discretizing the data +dndat <- function(NDATA){ + rownd <- dim(NDATA)[1] + colnd <- dim(NDATA)[2] + DDATA <- matrix(0,nrow=rownd,ncol=colnd) + colnames(DDATA) <- colnames(NDATA) + i <- 1 + for(i in 1:rownd){ + j <- 1 + for(j in 1:colnd){ + if(is.na(NDATA[i,j])==FALSE){ + + if(NDATA[i,j] < -1){ + DDATA[i,j]=0L + } + if(NDATA[i,j] > 1){ + DDATA[i,j]=2L + } + if(-1 <= NDATA[i,j] && NDATA[i,j] < 1){ + DDATA[i,j]=1L + } + } else{ + DDATA[i,j] = NDATA[i,j] + } + j = j + 1 + } + i = i + 1 + } + DDATA +} + + +#The Rest of this code will be used every time you want to change a data set + +#Getting the series matrix file +print("Choose the series matrix file that you want to Analyze") +alz <- file.choose() + +#Getting the GPL file +print("Choose the GPL file that correlates with the above series matrix file") +genena <- file.choose() + + +#Find out if it is a soft GPL file or not +soft <- strsplit(genena,"[\\|/]") %>% + .[[1]] %>% + .[length(.)] %>% + grepl("soft|annot",.) + +#Working with the wordy part of the document +alzword <- alz %>% + read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% + filter(grepl("!Sample",X1))%>% + filter(!grepl("!Sample_contact",X1)) + +##Changing row names and column names: +ALZWORD <- t(alzword) +rownames(ALZWORD)=NULL +colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) +ALZWORD <- chngrownm(ALZWORD)[-1,] +ALZWORD <- ALZWORD%>% + as.data.frame()%>% + dplyr::select(-starts_with("col")) + +##Reorganizing information within the columns +ALZWORDF <- cinfo(ALZWORD) + + +#Working with Actual Data part of file +alzdat <- alz %>% + read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) +ALZDAT <- t(alzdat[,-1]) +rownames(ALZDAT)=NULL + +##Is there a clean version of the GPL file available? +gplnum <- strsplit(genena,"[\\|/]") %>% + .[[1]] %>% + .[length(.)] %>% + gsub("\\D","",.) +clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) +if(clfileex >= 1){ +#use the clean version +geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% + read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") + +} +if(clfileex == 0){ +##Lets Create a clean version + +##Gene ID to Gene Name + if(soft == TRUE){ + #Check to see if there is already a file containing information on soft files + fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) + if(fileex == 1){ + #Check to see if this GPL soft file has been used before + IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% + .$GPL_FILE_NUM%>% + grepl(gplnum,.) %>% + sum() + if(IDF == 1){ + IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% + .$GPL_FILE_NUM%>% + grep(gplnum,.) + idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% + .$LOC_ID %>% + .[IDLOCAL] + geneIDNam <- genena %>% + read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% + dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) + } + if(IDF == 0){ + #No information on this particular GPL file + idLOCGPL <- genena %>% + read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% + t(.) %>% + grep("^ID\\s*$",.) %>% + -1 + cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% + cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) + geneIDNam <- genena %>% + read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% + dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) + } + } + if(fileex == 0){ + #We must create a file that we can access for later use + idLOCGPL <- genena %>% + read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% + t(.) %>% + grep("^ID\\s*$",.) %>% + -1 + Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) + colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") + write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) + geneIDNam <- genena %>% + read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% + dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) + } + } + if(soft == FALSE){ + geneIDNam <- genena %>% + read_delim(delim="\t",comment = "#")%>% + dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) + } + + ##Labeling the gene IDs without names + geneIDNam <- NAFIXING(geneIDNam) + + ##remove the whitespace + geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) + + ##Here is the clean version + write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) +} + + + +##Changing the gene ID to gene name +ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat)) +colnames(ALZDAT) = ALZDAT1[1,] + + +##Adjusting the column names aka the gene names +colnames(ALZDAT) <- gcnames(ALZDAT) + + +#Full RAW Data +Fullalzdwr <- ALZDAT %>% + as.data.frame() %>% + cbind(ALZWORDF,.) + + +#Raw file is output +nfnaex <- strsplit(alz,"[\\]") %>% + .[[1]] %>% + .[length(.)] %>% + gsub("\\D","",.) %>% + c("GSE",.,"aftexcel.txt") %>% + paste(collapse = "") +write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") + + +#Now for the discretization part +##get the wordy part again +rawword <- t(ALZWORDF) + +##where is ID_REF located +hereim <- grep("ID_REF",rawword[,1]) + +##Subject Names GSM... +subjnam <- rawword[hereim,] + +##Getting the names for the rows +namedarows <- rownames(rawword)[-hereim] %>% + as.data.frame() +RAWWORD <- rawword[-hereim,] %>% + as.data.frame() %>% + bind_cols(namedarows,.) +z <- 1 +naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) +for(z in 1:dim(RAWWORD)[1]){ + naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) + z <- z + 1 +} + +colnames(naroww) <- "ROW_NAs" +RAWWORD <- bind_cols(RAWWORD,naroww) + + +roALZna <- t(ALZDAT) %>% + rownames(.) %>% + as.data.frame(.) +colnames(roALZna) <- "ID_REF" + +RAWDAT <- t(ALZDAT) %>% + as.data.frame(.) +colnames(RAWDAT) <- NULL +rownames(RAWDAT) <- NULL + +RAWDAT2 <- RAWDAT %>% + cbind(roALZna,.) %>% + dplyr::arrange(.,ID_REF) + +##Editing the file for R processing +RAWDATID <- RAWDAT2[,1] %>% + as.matrix(.) + +RAWDATNUM <- RAWDAT2[,-1] %>% + mapply(.,FUN = as.numeric) %>% + t(.) + +##Consolidating genes with the same name +###create empty matrix of size equal to tabRDATID +tabRDATID <- table(RAWDATID) +NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) +j <- 1 +for(j in 1:length(tabRDATID)){ + + ##Putting the ones without duplicates in their new homes + if(tabRDATID[j] == 1){ + NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] + } + ##Averaging duplicates and putting them in their new homes + if(tabRDATID[j] > 1){ + NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) + } + j <- j + 1 +} + +##Scaling the Data +scrawdat <- NuRDATN%>% + scale() +attr(scrawdat,"scaled:center") <- NULL +attr(scrawdat,"scaled:scale") <- NULL +colnames(scrawdat) <- rownames(tabRDATID) + +##Discretized the Data +dialzdat <- scrawdat %>% + dndat(.) %>% + t()%>% + as.data.frame(.) +colnames(dialzdat) <- rownames(RAWDATNUM) + +##setting "ID_REF" as a new variable +geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) +colnames(geneNAM) <- "ID_REF" +rownames(dialzdat) <- NULL +dialzdat <-bind_cols(geneNAM,dialzdat) + +##NAs in a column +x <- 2 +nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) +nacol[1,1] = "COL_NAs" +for(x in 2:dim(dialzdat)[2]){ + nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) + x <- x + 1 +} +colnames(nacol) <- colnames(dialzdat) +dialzdat<-bind_rows(dialzdat,nacol) + +##NAs in a row +y <- 1 +narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) +for(y in 1:dim(dialzdat)[1]){ + narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) + y <- y + 1 +} +colnames(narowd) <- "ROW_NAs" +dialzdat <- bind_cols(dialzdat,narowd) +colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam +colnames(RAWWORD) <- colnames(dialzdat) +##converting to character so that the clinical can be brought together with discrete data +k <- 2 +for(k in 2:dim(dialzdat)[2]-1){ + dialzdat[,k] <- as.character(dialzdat[,k]) + k <- k + 1 +} +#The End the full data +Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) + +#Produces Discrete file +nfnaex <- strsplit(rawdat,"[\\|/]") %>% + .[[1]] %>% + .[length(.)] %>% + gsub("\\D","",.) %>% + c("GSE",.,"dscrt.txt") %>% + paste(collapse = "") +write.table(Dscrtalzdw, file = nfnaex, sep = "\t",col.names = TRUE,row.names = FALSE) +