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Abstract

Bayesian network structure learning is often performed in a Bayesian setting, by evaluating can-
didate structures using their posterior probabilities for a given data set. Score-based algorithms
then use those posterior probabilities as an objective function and return the maximum a posteriori
network as the learned model. For discrete Bayesian networks, the canonical choice for a posterior
score is the Bayesian Dirichlet equivalent uniform (BDeu) marginal likelihood with a uniform (U)
graph prior (Heckerman et al., [1999). Its favourable theoretical properties descend from assuming
a uniform prior both on the space of the network structures and on the space of the parameters of the
network. In this paper, we revisit the limitations of these assumptions; and we introduce an alterna-
tive set of assumptions and the resulting score: the Bayesian Dirichlet sparse (BDs) empirical Bayes
marginal likelihood with a marginal uniform (MU) graph prior. We evaluate its performance in an
extensive simulation study, showing that MU+BDs is more accurate than U+BDeu both in learning
the structure of the network and in predicting new observations, while not being computationally
more complex to estimate.
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1. Introduction

Bayesian networks (BNs; [Pearl, [1988; [Koller and Friedman, 2009) are a class of statistical models
composed by a set of random variables X = { X7y, ..., X} and by a directed acyclic graph (DAG)
G = (V, A) in which each node in V is associated with one of the random variables in X (they are
usually referred to interchangeably). The arcs in A express direct dependence relationships among
the variables in X; graphical separation of two nodes implies the conditional independence of the
corresponding random variables. In principle, there are many possible choices for the joint distribu-
tion of X; literature has focused mostly on discrete BNs (Heckerman et al.,[1995), in which both X
and the X; are multinomial random variables and the parameters of interest are the conditional prob-
abilities associated with each variable, usually represented as conditional probability tables. Other
possibilities include Gaussian BNs (Geiger and Heckerman, [1994) and conditional linear Gaussian
BNs (Lauritzen and Wermuth, |1989).

The task of learning a BN from data is performed in two steps in an inherently Bayesian setting.
Consider a data set D and a BN B = (G, X). If we denote the parameters of the joint distribution
of X with ©, we can assume without loss of generality that © uniquely identifies X in the family
of distributions chosen to model D and write

P(B|D) =P(G,0|D) = P(G|D) : PO[g,D) . (1)
—— —_——
learning structure learning parameter learning

Structure learning consists in finding the DAG G that encodes the dependence structure of the
data. Three general approaches to learn G from D have been explored in the literature: constraint-
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based, score-based and hybrid. Constraint-based algorithms use conditional independence tests such
as mutual information (Cover and Thomas, [2006) to assess the presence or absence of individual
arcs in G. Score-based algorithms are typically heuristic search algorithms and use a goodness-of-
fit score such as BIC (Schwarz,(1978) or the Bayesian Dirichlet equivalent uniform (BDeu) marginal
likelihood (Heckerman et all,|[1995) to find an optimal G. For the latter a uniform (U) prior over the
space of DAGs is assumed for simplicity. Hybrid algorithms combine the previous two approaches,
using conditional independence tests to restrict the search space in which to perform a heuristic
search for an optimal G. For some examples, see |Aliferis et all (2010), [Larrafiaga et al. (1997),
Cussens (2011)) and [Tsamardinos et al/ (2006).

Parameter learning involves the estimation of the parameters © given the DAG G learned in
the first step. Thanks to the Markov property (Pearl, [1988), this step is computationally efficient
because if the data are complete the global distribution of X decomposes into

N
P(X|G) = [[P(x;|1x,) 2

1=1

and the local distribution associated with each node X; depends only on the configurations of the
values of its parents IIx,. Note that this decomposition does not uniquely identify a BN; differ-
ent DAGs can encode the same global distribution, thus grouping BNs into equivalence classes
(Chickering, [1995) characterised by the skeleton of G (its underlying undirected graph) and its v-
structures (patterns of arcs of the type X; — X; < Xj).

In the remainder of this paper we will focus on discrete BN structure learning in a Bayesian
framework. In Section [2| we will describe the canonical marginal likelihood used to identify maxi-
mum a posteriori (MAP) DAGs in score-based algorithms, BDeu, and the uniform prior U over the
space of the DAGs. We will review and discuss their underlying assumptions and fundamental prop-
erties. In Section[3|we will address some of their limitations by introducing a new set of assumptions
and the corresponding modified posterior score, which we will call the Bayesian Dirichlet sparse
(BDs) marginal likelihood with a marginal uniform (MU) prior. Based on the results of an extensive
simulation study, in Section |4 we will show that MU+BDs is preferable to U+BDeu because it is
more accurate in learning G from the data; and because the resulting BNs provide better predictive
power than those learned using U+BDeu.

2. The Bayesian Dirichlet Equivalent Uniform Score (BDeu) with a Uniform Prior
(U)

Starting from (II), we can decompose P(G | D) into
P(G|D) x PG)P(D|G) =P(G) [ P(D|6,0)P(O]0)de ®

where P(G) is the prior distribution over the space of the DAGs and P(D | G) is the marginal like-
lihood of the data given G averaged over all possible parameter sets ©. Using we can then
decompose P(D | G) into one component for each node as follows:

N N
P(D\g>=HP<Xirnxi>=H[ [Pt ox)pox Mx)dex|. @

i=1 i=1
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In the case of discrete BNs, we assume X; | IIx, ~ Multinomial(©x;, | ILx,) where the O, | IIx,
are the conditional probabilities m;;, = P(X; = k|Ily, = j). We then assume a conjugate prior
Ox, |lx, ~ Dirichlet(cji), ij a;jr, = oy > 0 to obtain the posterior Dirichlet (o, + nijk)
which we use to estimate the 7;;;, from the counts n;;;, observed in D. «; is known as the imaginary
or equivalent sample size and determines how much weight is assigned to the prior in terms of the
size of an imaginary sample supporting it.

Further assuming positivity (7, > 0), parameter independence (;;y, for different parent con-
figurations are independent), parameter modularity (m;;;, associated with different nodes are in-
dependent) and complete data, Heckerman et al. (1995) derived a closed form expression for (),
known as the Bayesian Dirichlet (BD) score:

BD(¢ D'a):ﬁBD(X- i 'a‘):ﬁﬁ Dloy) 7 Hoge b))
» &5 il 1y LX) Qg B F(aij+nij) 11 F(aijk)

where r; is the number of states of X;; g; is the number of configurations of IIx,; n;; = M & Mijks
and o;; = > ) ajjk. For a;, = 1,5 = 1;q; we obtain the K2 score from (Cooper and Herskovits
(1991); and for o, = «/(rigi), i = o we obtain the Bayesian Dirichlet equivalent uniform
(BDeu) score from |[Heckerman et al. (1995), which is the most common choice used in score-based
algorithms to estimate P(G | D). It can be shown that BDeu is score equivalent (Chickering, [1995),
that is, it takes the same value for DAGs that encode the same probability distribution. The uniform
prior over the parameters associated with each X; | ITx, was justified by the lack of prior knowledge
and widely assumed to be non-informative.

However, there is an increasing amount of evidence that such a set of assumptions leads to a
prior that is far from non-informative and that has a strong impact on the quality of the learned
DAGs. ISilander et all (2007) showed via simulation that the MAP DAGs selected using BDeu
are highly sensitive to the choice of «. Even for “reasonable” values such as o € [1,20], they
obtained DAGs with markedly different number of arcs, and they showed that large values of «
tend to produce DAGs with more arcs. This is counter-intuitive because larger oo would normally be
expected to result in stronger regularisation and sparser BNs. |Steck and Jaakkola (2003) similarly
showed that the number of arcs in the MAP network is determined by a complex interaction between
« and D; in the limits o — 0 and o — oo it is possible to obtain both very sparse and very dense
DAGs. Furthermore, they argued that BDeu can be rather unstable for “medium-sized” data and
small «, which is a very common scenario. |Steck (2008) approached the problem from a different
perspective and derived an analytic approximation for the “optimal” value of « that maximises
predictive accuracy, further suggesting that the interplay between a and D is controlled by the
skewness of the P (X | Iy, ) and by the strength of the dependence relationships between the nodes.
These results have been analytically confirmed more recently by [Uena (2010, 2011)).

As far as P(G) is concerned, the most common choice is the uniform (U) distribution P(G) o 1;
the space of the DAGs grows super-exponentially in N (Harary and Palmer,1973) and that makes it
extremely difficult to specify informative priors (Castelo and Siebes, 2000; IMukherjee and Speed,
2008). In our previous work (Scutari, 2013), we explored the first- and second-order properties of
U and we showed that for each possible pair of nodes (X;, X;)
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where p;; = P({X; — X;} € A), pi; = P{X; « X;} € A) and pi; = P{X; — X,
X; <+ X} ¢ A). This prior distribution is asymptotically (marginally) uniform over both arc pres-
ence and direction: each arc is present in G with probability 1/2 and, when present, it appears in each
direction with probability 1/2. We also showed that two arcs are correlated if they are incident on a
common node and uncorrelated otherwise through exhaustive enumeration of all possible DAGs for
N < 7 and through simulation for larger /N. This suggests that false positives and false negatives
can potentially propagate through P(G) as well as P(D | G) and lead to further errors in learning G.

3. The Bayesian Dirichlet Sparse Score (BDs) with a marginal uniform (MU) prior

It is clear from the literature review in Section [2] that assuming uniform priors for O, |IIx, and G
can have a negative impact on the quality of the DAGs learned using BDeu. Therefore, we propose
an alternative set of assumptions; we call the resulting score the Bayesian Dirichlet sparse (BDs)
marginal likelihood with a marginal uniform (MU) prior.

Firstly, we consider the marginal likelihood BDeu. Starting from (3), we can write it as

BDeu(G. D: o) = . BDeu(X;, Iy : T 7 Lled + ni) 7
eu(G,D;a) = H eu(X;, I[lx; HH Flra? +n”) H Tla?) (7
i=1 i=17j=1 k=1 t

where of = a/(r;¢;). If the positivity assumption is violated or the sample size n is small, there
may be configurations of some IIx, that are not observed in D. In such cases n;; = 0 and

(riaf) .y £ (riaf) - Lo + ngjr)
187 F(af)] H [F(naj—i—nij) H F(oﬁ) ]

k=1 Jmni; >0 k=1 t
@)

This implies that the effective imaginary sample size decreases as the number of unobserved parents
configurations increases, since ) | Jini;>0 Yoo <Y 1 @; = o In turn, the posterior estimates of
m;jk gradually converge to the corresponding maximum likelihood estimates thus favouring over-
fitting and the inclusion of spurious arcs in G. Furthermore, the comparison between DAGs with
very different number of arcs may be inconsistent because the respective effective imaginary sam-
ple sizes will be different. [Steck and Jaakkola (2003) and |Silander et all (2007) observed both these
phenomena, indeed linking them to the interplay between « and D.
To address these two undesirable features of BDeu we replace o} in (7) with

BDeu(X;, Mx;;0) =[]

Jing;=0

) where ¢i = {number of Ilx, such that n;; > 0}. ©)
otherwise.

B a/(ncjz) if N > 0
oy =
0
Note that () is still piece-wise uniform, but now » jiniy>0 > i @i = a so the effective imaginary
sample size is equal to o even for sparse data. Intuitively, we are defining a uniform prior just
on the conditional distributions we can estimate from D, thus moving from a fully Bayesian to an
empirical Bayes score. Plugging (9) in (3) we obtain BDs:

T(rici) 1 D(a; + nijr)
BDs(X;, Ilx,;; ) = A A 10
s(Xi, Ix,; @) j.H>0 P(riaierj),H NG 1o
.nij =
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If the positivity assumption holds, we will eventually observe all parents configurations in the data
and thus BDs(X;, ITx,; o) — BDeu(X;,IIx,; ) as n — oo. Note, however, that BDs is not score
equivalent for finite n unless all n;; > 0. A numeric example is given below, which also highlights
how BDs can be computed in the same time as BDeu.

Example 1 Consider two binary variables X, and X with data D comprising x11 = 0, x12 = 0,
X1 = 2, xyy = 5 where x;; = #{X1 = ,Xo = j}. Ifa =1 G = {X; = Xo} and
Go = {X2 = X1}

BDs(G1,D;1) =
[ ra ree+o0rie+ 7)] { ') ree+2)ri/2+5)
Fa+7)  TOART(R) ra+7  TART0/A)

] = 0.0009,

BDs(Ga. D: 1) — [ (1) F(1/2+2)1“(1/2+5)]

ra+7)  TERTER)
LRI LA+ 0TE/s+0)T(/a+2)T(1/1+5)
[F(l/2 +2)T(12+5) L1/ (1/4)L (/)0 (/1)

as a term of comparison the empty DAG Gy has BDs(Gp, D) = 0.0009.

] = 0.0006;

In the general case we have BDs(X;, IIx,; &) = BDeu(X;, IIx,; «(¢;/d;)) which breaks the
score equivalence condition in [Heckerman et all (1993) because of the uneven imaginary sample
size associated with each node (like the K2 score). We can interpret «(g;/q;) as an adaptive regu-
larisation hyperparameter that penalises X; | ITy, that are not fully observed in D, which typically
correspond to X; with a large number of incoming arcs. Since Steck and Jaakkola (2003) showed
that BDeu favours the inclusion of spurious arcs for sparse X; | Ilx,, this adaptive regularisation
should lead to sparser DAGs and reduce overfitting, in turn improving predictive accuracy as well.

Secondly, we propose a modified prior over for G with the same aims. We start from the con-
sideration that score-based structure learning algorithms typically generate new candidate DAGs by
a single arc addition, deletion or reversal. So, for example

P(GU{X; = X;}|D) > P(G|D) = accept G U {X; — X;} and discard G. (11)
When using the U prior we can rewrite (1)) as

PGU{X; = Xi} D) _ P(GULX; 2 X51TP(D|GU{X; — Xi})
P(G|D) - _—P9) P(D[9)

The fact that U always simplifies is equivalent to assigning equal probabilities to all possible states
of an arc (subject to the acyclicity constraint), say p_Z; = ﬁ] = pi; = 1/3 using the notation in
(6). In other words, U favours the inclusion of new arcs in G (subject to the acyclicity constraint)
as p_Z; + ﬁ] = 2/3. Since |Scutari (2013) also showed that arcs incident on a common node are
correlated and may favour each other’s inclusion, U may then contribute to overfitting G.

Therefore, we introduce the marginal uniform (MU) prior, in which we assume an independent
prior for each arc as in|Castelo and Siebes (2000), with probabilities

> 1. (12)

1 . 1 L.
ﬁ;— =Dij = 1 and Dij = 3 for all i # j (13)
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as in |Scutari (2013). These assumptions make MU computationally trivial to use: the ratio of
the prior probabilities is !/2 for arc addition, 2 for arc deletion and 1 for arc reversal, for all arcs.
Furthermore, arc inclusion now has the same prior probability as arc exclusion (p_zg + ﬁj =pij =
1/2) and arcs incident on a common are no longer correlated, thus limiting overfitting and preventing
the inclusion of spurious arcs to propagate. However, the marginal distribution for each arc is the
same as in (@) for large IV, hence the name “marginal uniform”.

4. Simulation Study

We assessed BDs and MU on a set of 10 reference BNs (Table [I) covering a wide range of N (8
to 442), p = |O] (18 to 77K) and number of arcs |A| (8 to 602). For each BN, we generated 20
training samples of size n/p = 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 (to allow for meaningful comparisons
between BNs with such different NV and p) and we learned G using U+BDeu, U+BDs, MU+BDeu
and MU+BDs with & = 1, 5,10 on each sample. For U + BDeu we also considered the optimal
« from [Steck (2008), denoted ag. In addition, we considered BIC as a term of comparison, since
BIC — log BDeu as n — oo. We measured the performance of different scoring strategies in terms
of the quality of the learned DAG using the SHD distance (Tsamardinos et all, 2006) from the Grgr
of the reference BN; in terms of the number of arcs compared to |Agrgr| in Grer; and in terms of
predictive accuracy, computing the log-likelihood on a test set of size 10K as an approximation of
the corresponding Kullback-Leibler distance. For parameter learning, we used Dirichlet posterior
estimates and o = 1 as suggested in |Koller and Friedman (2009). All simulations were performed
using the hill-climbing implementation in the bnlearn R package (Scutari, 2010), which provides
several options for structure learning, parameter learning and inference on BNs (including the pro-
posed MU and BDs). Since @ = 5 produced performance measures that are always in between
those for & = 1 and a = 10, we omit its discussion for brevity.

SHD distances are reported in Table 2l MU+BDs outperforms U+BDeu for all BNs and "/ and
is the best score overall in 41/60 simulations. BIC also outperforms U+BDeu in 39/60 simulations
and is the best score overall in 9/60. For U+BDeu, o = 1 always results in a lower SHD than o
and a = 10, which is in agreement with [Ueno (2010). The improvement in SHD given by using
BDs instead of BDeu and by using MU instead of U appears to be largely non-additive; MU+BDs
in most cases has the same or nearly the same SHD as the best between U+BDs and MU+BDeu.
However, MU+BDeu is tied with MU+BDs for the best SHD more often than U+BDs (21/60 vs
11/60) which suggests improvements in SHD can be attributed more to the use of MU than that of

network N | 4| D network N | |A4] D
ALARM 37 | 46 209 HAILFINDER | 56 | 66 | 2656
ANDES 223 | 338 1157 HEPAR 2 70 | 123 | 1453
ASIA 8 8 18 INSURANCE 27 | 52 984
CHILD 20| 25 230 PATHFINDER | 135 | 200 | 77155
DIABETES | 413 | 602 | 429409 PIGS 442 | 592 | 5618

Table 1: Reference BNs from the BN repository (Scutari, |2012) with the respective numbers of
nodes (), numbers of arcs (] A|) and numbers of parameters (p = |O)).
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BIC U + BDeu U+ BDs MU + BDeu MU + BDs
NETWORK n/p 1 as 10 1 10 1 10 1 10
01 | 555 | 780 805 1127 | 642 8§73 | 530 835 | 530 655
02| 508 | 492  s6.1 92.8 | 495 752 | 39.6 683 | 39.6 562
05| 408 | 355 419 720 | 349 615 | 313 535 | 313 461
ALARM 10| 33.7| 319 376 626 | 291 518 | 271 498 | 271 421
20| 281 | 263 319 531 | 23.1 445 | 229 410 | 229 365
50| 226 | 244 301 416 | 209 350 | 204 316 | 204 289
0.1 | 367.6 | 6421 997.6 1071.0 | 7865 13678 | 4399 7659 | 4390 8290
02 | 2783 | 450.1 6869 7734 | 5228  957.0 | 313.0 5604 | 313.0 5724
0.5 | 1974 | 2649 4453 5760 | 2784  590.7 | 197.1 409.1 | 197.1 3862
ANDES 10 | 1473 | 1963 3207  467.1 | 1963 4343 | 1433 3314 | 1433  299.4
20 | 1162 | 1426 2466 3883 | 1394 3455 | 109.9 2802 | 109.9 243.9
50| 783 | 1035 1722 2892 | 100.8  253.6 | 782 2065 | 782 1765
0.1 83 | 169 169 16.9 83 83 S0 80| 80 80
0.2 86 | 141 141 14.1 8.5 8.5 8.5 80| 85 8.0
0.5 84 | 109 1Ll 144 | 86 10.1 8.5 8.8 8.5 8.0
ASIA 1.0 8.3 9.7 9.8 14.1 8.5 12| 82 17| 82 96
2.0 8.1 8.2 8.3 132 | 86 22| 72 102 72 96
s0| 60| 59 59 115 57 10.3 57 97| 57 8.1
01 | 284 | 396 448 515 | 386 465 | 31.6 365 | 316 336
02| 252 | 269 330 360 | 299 381 | 246 275 | 246 278
05| 210 211 236 250 | 214 246 | 189 211 | 189 207
CHILD 10| 185 181 200 199 | 18.1 200 | 177 180 | 177 178
20| 161 ] 170 156 154 | 170 154 | 158 134 | 158 134
50| 144 147 124 123 | 147 123 | 128 94 | 128 9.4
0.1 | 4843 | 3990 520.6 4448 | 387.8 3788 | 4004 4295 | 4004 3786
02 | 5494 | 381.0 5332 4350 | 3775 3832 | 381.0 3856 | 381.0 3773
0.5 | 4168 | 399.6 5312 4400 | 387.9 3739 | 3922 4300 | 3922 3739
DIABETES 1.0 | 4123 | 373.0 5309 4203 | 3750 3722 | 368.5 4158 | 368.5 372.1
20 | 3848 | 3809 551.6 4353 | 365.6 3957 | 3757 4328 | 3757  395.0
50 | 4021 | 413.6  599.0  465.0 | 408.0  427.0 | 412.6 4658 | 412.6  426.7
01| 631 ] 664 496 504 | 620 461 | 630 480 | 630 481
02 | 489 | 547 441 408 | 506 363 | 517 384 | S17 453
05 | 319 | 400 469 351 | 347 299 | 368 321 | 368 385
HAILFINDER 1.0 | 345 | 338 484 405 | 31.1 353 | 307 392 | 307 352
20| 364 | 420 388 384 | 360 333 | 390 371 | 390 331
50| 169 | 244 279 21.1 | 184 151 214 190 | 214 150
0.1 | 143.0 | 1837 2267 2699 | 1924 2922 | 149.1 2098 | 149.1 2102
02 | 126.6 | 1537 1838 2202 | 1574 2311 | 1343 1756 | 1343 1719
0.5 | 101.5 | 1151 1386 1666 | 1168  167.3 | 1053 1382 | 1053 1342
HEPAR2 10| 8.0 | 930 1085 1328 | 942 1281 | 880 1098 | 880 1058
20| 739 | 765 893 1066 | 775 1023 | 750  89.0 | 750  87.0
50| 586 | 60.1 630 730 | 605 69.5 | 587 622 | 586  59.5
01 | 495 ] 506 57.1 678 | 530 630 | 485 597 | 485 569
02 | 463 | 475 555 638 | 494 60.1 | 459 585 | 459 537
05| 469 | 459 525 59.0 | 459 522 | 436 555 | 436  49.1
INSURANCE 1.0 | 498 | 423 480  53.6 | 437 502 | 423 510 | 422 463
20 | 464 | 429 480 539 | 428 490 | 430 516 | 426 462
50| 471 ] 395 443 488 | 39.1 462 | 395 472 | 391 446
0.1 | 2782 | 2692 398.1 3459 | 2503 2929 | 237.8 309.0 | 237.8 2579
02 | 261.0 | 2562 3827 3362 | 2211 2512 | 2342  304.6 | 2342 246.8
0.5 | 259.6 | 2550 351.6 2994 | 189.2 2032 | 2342 2774 | 2342 1937
PATHFINDER 1.0 | 2402 | 242.8 3420  289.4 | 1713 182.6 | 2205 2649 | 2205 1738
20 | 2259 | 2323 3339 2778 | 1569 1697 | 2182 2532 | 2182 177.8
50 | 2185 | 208.1 3205 2634 | 1247 1302 | 189.8 2392 | 189.8 119.5
0.1 | 1307 | 1148 1554 2033 | 1162 1630 | 1063 1667 | 1063  146.7
02 | 1180 | 137.1 1423 1656 | 1367 1275 | 1275 1432 | 1275 1115
0.5 | 1311 | 1329 1348 1424 | 1313 1105 | 1226 1265 | 1226 954
PIGS 10 | 1338 | 1352 1362 1389 | 1325 1048 | 1220 1245 | 1220  91.2
20 | 1387 | 1428 1436 1448 | 1372 109.0 | 1282 1288 | 1282  89.0
50 | 1498 | 1555 1551 1566 | 1502 1169 | 140.6 1407 | 1406  99.2

Table 2: Average SHD distance from Grer (lower is better, best in bold).
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BDs. The higher SHD for U+BDeu is a consequence of the higher number of arcs present in the
learned DAGs, shown in Table[3] Both MU+BDs and BIC learn fewer arcs than U+BDeu in 59/60
simulations for both & = 1 and o = 10; U+BDeu learns too many arcs (i.e., the ratio with |Argr|
is greater than 1) in 38/60 simulations even for o = 1, as opposed to 23/60 (MU+BDs) and 18/60
(BIC). As we argued in Section [3] replacing U with MU results in DAGs with fewer arcs for all
BNs and n/p. Replacing BDeu with BDs results in fewer arcs in 32/60 simulations for o« = 1 and
in 59/60 for a = 10, which suggests that the overfitting observed for U+BDeu can be attributed to
both U and BDeu.

The rescaled predictive log-likelihoods in Tabledshow that U+BDeu never outperforms MU+BDs
for n/p < 1.0 for the same «; for larger 7/p all scores are tied, and are not reported for brevity.
U+BDeu for «; is at best tied with the corresponding score for « = 1 or & = 10. The overall best
score is MU+BDs for 7/10 BNs and BIC for the remaining 3/10.

5. Conclusions and Discussion

In this paper we proposed a new posterior score for discrete BN structure learning. We defined it
as the combination of a new prior over the space of DAGs, the “marginal uniform” (MU) prior, and
of a new empirical Bayes marginal likelihood, which we call “Bayesian Dirichlet sparse” (BDs).
Both have been designed to address the inconsistent behaviour of the classic uniform (U) prior and
of BDeu explored by [Silander et all (2007), ISteck and Jaakkola (2003) and [Uend (2010) among
others. In particular, our aim was to prevent the inclusion of spurious arcs.

In an extensive simulation study using 10 reference BNs we find that MU+BDs outperforms
U+BDeu for all combinations of BN and sample sizes, both in the quality of the learned DAGs
and in predictive accuracy. This is achieved without increasing the computational complexity of
the posterior score, since MU+BDs can be computed in the same time as U+BDeu. In this respect,
the posterior score we propose is preferable to similar proposals in the literature. For instance, the
NIP-BIC score from [Uena (2011) and the NIP-BDe/Expected log-BDe scores from [Ueno and Uto
(2012) outperform BDeu but at a significant computational cost. The same is true for the optimal
« proposed by ISteck (2008) for BDeu, whose estimation requires multiple runs of the structure
learning algorithm to converge. The Max-BDe and Min-BDe scores in |Scanagatta et al. (2014)
overcome in part the limitations of BDeu by optimising for either goodness of fit at the expense of
predictive accuracy, or vice versa. As a further term of comparison, we also included BIC in the
simulation; while it outperforms U+BDeu in some circumstances and it is computationally efficient,
MU+BDs is better overall in the DAGs it learns and in predictive accuracy.
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BIC U+ BDeu U+ BDs MU + BDeu MU + BDs
NETWORK n/p 1 as 10 1 10 1 10 1 10

0.1 | 059 | 1.635 1.697 2550 | 1.329 1.875 | 1.040 1.854 | 1.040 1.351
02 | 0662 | 1.272 1.448 2278 | 1.321 1.874 | 1.049 1.730 | 1.049 1436
05 | 0746 | 1.174 1290 1993 | 1.213 1.775 | 1.060 1.605 | 1.060  1.436
ALARM 1.0 | 0.859 | 1.165 1.302 1.830 | 1.180 1.667 | 1.071 1.553 | 1.071 1.426
20 | 0972 | 1.117 1.236 1.664 | 1.098 1.528 | 1.064 1.445 | 1.064 1.377
50 | 1.092 | 1.098 1.208 1.457 | 1.086 1386 | 1.061 1.286 | 1.061 1.252

0.1 | 1.069 | 1910 3.020 3.248 | 2.339 4.121 | 1.294 2329 | 1.294 2510
0.2 | 1.032 | 1.550 2303 2570 | 1.764 3.115 | 1.129 1926 | 1.129 1.963
05 | 1.018 | 1.224 1.794 2.195 | 1.258 2236 | 1.011 1.694 | 1.011  1.622
ANDES 1.0 | 1.011 | 1.156 1.556 1.999 | 1.154 1.898 | 0.991 1.593 | 0991 1.496
2.0 | 1.007 | 1.073 1399 1.829 | 1.063 1.702 | 0.996 1.507 | 0.996 1.399
5.0 | 0999 | 1.056 1.275 1.642 | 1.046 1.541 | 0970 1.394 | 0.970  1.309

0.1 | 0.163 | 2.038 2.038 2.038 | 0.163 0.163 | 0.000 0.000 | 0.000 0.000
02 | 0338 | 1.669 1.669 1.669 | 0.163 0.163 | 0.163 0.000 | 0.163  0.000
0.5 | 0381 | 1.306 1337 1.744 | 0412 0.706 | 0.281 0.662 | 0.281  0.150
ASIA 1.0 | 0312 | 1.031 1.094 1.731 | 0.338 0.881 | 0.231 1.044 | 0.231 0.463
20 | 0544 | 1.025 1.031 1.769 | 0.762  1.325 | 0.544 1.238 | 0.544  0.838
50 | 0.688 | 1.012 1.012 1.781 | 0.863 1.406 | 0.700 1.356 | 0.700 1.019

0.1 | 0442 | 1.150 1.470 1.802 | 1.114 1.564 | 0.788 1.098 | 0.788  0.956
02 | 0.588 | 0.894 1.250 1.366 | 1.014 1.444 | 0.744 0.992 | 0.744  0.998
0.5 | 0.642 | 0.730 1.080 1.134 | 0.744 1.132 | 0.658 0.942 | 0.658  0.950
CHILD 1.0 | 0.730 | 0.774 1.006 1.020 | 0.772 1.016 | 0.736 0912 | 0.736  0.920
2.0 | 0.808 | 0.842 1.000 0.994 | 0.842 0994 | 0.820 0.962 | 0.820 0.962
50 | 0914 | 0908 1.046 1.034 | 0908 1.034 | 0.898 1.012 | 0.898 1.012

0.1 | 1.023 | 1.107 1.419 1.252 | 1.122 1.158 | 1.107 1.229 | 1.107 1.157
0.2 | 1.065 | 1.115 1.447 1237 | 1.136  1.169 | 1.115 1.200 | 1.115 1.168
0.5 | 1.051 | 1.150 1.442 1.224 | 1.158 1.189 | 1.138 1.205 | 1.138  1.189
DIABETES 1.0 | 1.048 | 1.156 1.499 1236 | 1.164 1.193 | 1.149 1.228 | 1.149 1.193
20 | 1.083 | 1.176  1.539 1.281 | 1.192 1.264 | 1.167 1.276 | 1.167 1.262
50 | 1158 | 1.260 1.619 1.349 | 1.281 1322 | 1.261 1.350 | 1.260 1.321

0.1 | 0.699 | 0.774 1.077 0.972 | 0.707 0.880 | 0.714 0.928 | 0.714  0.862
02 | 0.782 | 0.901 1.098 0.977 | 0.839 0.880 | 0.852 0.942 | 0.852 0.873
05 | 0.843 | 0933 1.117 0.995 | 0.854 0.886 | 0.886 0.970 | 0.886  0.892
HAILFINDER 1.0 | 0.892 | 0967 1.145 1.014 | 0.884 0904 | 0919 0.992 | 0919 0.901
20 | 0.898 | 0.989 1.189 1.049 | 0.898 0942 | 0943 1.027 | 0.943 0.936
5.0 | 0986 | 1.059 1.231 1.099 | 0.968 0978 | 1.013 1.067 | 1.013 0.977

0.1 | 0451 | 0.886 1.338 1.723 | 0.972 1.944 | 0527 1.198 | 0.527 1.202
02 | 0433 | 0739 1.121 1472 | 0.786 1.576 | 0491 1.063 | 0.491 1.039
0.5 | 0467 | 0.654 0962 1.250 | 0.680 1.252 | 0.498 0.967 | 0.498 0.922
HEPAR2 1.0 | 0.525 | 0.635 0.885 1.140 | 0.653 1.111 | 0.551 0.908 | 0.551 0.875
2.0 | 0.588 | 0.660 0.885 1.069 | 0.668 1.041 | 0.598 0.890 | 0.598 0.873
5.0 | 0.681 | 0.726 0918 1.020 | 0.729 0992 | 0.697 0913 | 0.697 0.887

0.1 | 0405 | 0.626 0.829 1.042 | 0.663 0937 | 0.549 0.870 | 0.549 0.779
0.2 | 0447 | 0.647 0.825 1.010 | 0.674 0927 | 0.603 0.901 | 0.603  0.819
0.5 | 0.535 | 0.689 0.859 1.048 | 0.700 0.906 | 0.662 0962 | 0.662 0.830
INSURANCE 1.0 | 0.638 | 0.760 0906 1.054 | 0.776 0941 | 0.746  0.989 | 0.746  0.870
20 | 0723 | 0.806 0942 1.103 | 0.811 1.012 | 0.799 1.058 | 0.799 0.941
50 | 0797 | 0.880 1.011 1.096 | 0.887 1.040 | 0.870 1.057 | 0.870  0.994

0.1 | 0.815 | 1.154 1.862 1.591 | 1.062 1337 | 0.961 1.391 | 0961 1.112
02 | 0.805 | 1.096 1.852 1.538 | 0.992 1.190 | 0.941 1376 | 0941 1.044
05 | 0.871 | 1.096 1.846 1.438 | 0985 1.102 | 0.963 1.320 | 0.963 1.014
PATHFINDER 1.0 | 0.864 | 1.081 1.871 1477 | 0.965 1.068 | 0.951 1.343 | 0951 0.999
20 | 0.859 | 1.095 1.907 1470 | 0.966 1.014 | 1.004 1.346 | 1.004 0.958
50 | 0.864 | 1.071 1945 1467 | 0919 0974 | 0985 1.347 | 0985 0.946

0.1 | 1.047 | 1.050 1.098 1.176 | 1.049 1.156 | 1.044 1.122 | 1.044 1.112
02 | 1.059 | 1.063 1.071 1.112 | 1.062 1.091 | 1.052 1.082 | 1.052 1.065
05 | 1.062 | 1.065 1.067 1.079 | 1.063 1.060 | 1.059 1.066 | 1.059 1.048
PIGS 1.0 | 1.064 | 1.067 1.069 1.073 | 1.064 1.051 | 1.058 1.062 | 1.058 1.044
20 | 1.073 | 1.075 1.076 1.079 | 1.069 1.074 | 1.062 1.066 | 1.062 1.044
50 | 1.078 | 1.085 1.085 1.086 | 1.079 1.061 | 1.074 1.074 | 1.074 1.052

Table 3: Average number of arcs (rescaled by |Argr|; closer to 1 is better, best in bold).



MARCO SCUTARI

BIC U+ BDeu U+ BDs MU + BDeu MU + BDs
NETWORK n/p 1 as 10 1 10 1 10 1 10

01| 154 ] 167 168 18 | 167 180 | 151 169 | 151 160
ALARM 02| 133 ] 132 134 144 | 135 143 | 129 136 | 129 134

0.5 1.21 1.17 1.17 1.21 1.17 1.20 1.16 1.18 1.16 1.17
0.1 | 11.12 | 13.14 1756 18.59 | 1475 24.40 | 1190 15.77 | 11.90 17.77
ANDES 0.2 | 10.00 | 1056 11.53 11.96 | 10.88 13.30 | 10.16 11.13 | 10.16 11.47
0.5 9.50 9.60 9.80 9.96 9.63 10.07 9.53 9.73 9.53 9.74
0.1 0.41 0.47 0.47 0.47 0.41 0.41 0.39 0.39 0.39 0.39
ASIA 0.2 0.37 0.39 0.39 0.39 0.36 0.36 0.36 0.36 0.36 0.36
0.5 0.31 0.32 0.32 0.33 0.32 0.31 0.31 0.30 0.31 0.31
0.1 1.82 2.03 2.19 2.30 2.07 2.31 1.91 2.04 1.91 2.00
CHILD 0.2 1.58 1.66 1.77 1.82 1.71 1.88 1.62 1.68 1.62 1.69
0.5 1.39 1.40 1.44 1.46 1.40 1.46 1.39 1.42 1.39 1.42
0.1 | 20.54 | 1940 19.26 1927 | 1934 19.26 | 1940 19.26 | 1940 19.26
DIABETES 02 | 19.87 | 19.14 19.13 19.13 | 1920 19.13 | 19.14 19.10 | 19.14 19.13
0.5 | 1924 | 19.05 19.03 19.04 | 19.10 19.00 | 19.05 19.04 | 19.05 19.00
0.1 5.31 5.31 5.24 5.23 5.30 5.23 5.31 5.22 5.31 5.22
HAILFINDER 0.2 5.13 5.13 5.09 5.09 5.12 5.08 5.13 5.08 5.13 5.08
0.5 5.01 5.01 5.00 5.01 5.01 4.99 5.01 4.99 5.01 4.99
0.1 3.49 3.73 3.98 4.24 3.81 4.68 3.58 3.90 3.58 4.04
HEPAR2 0.2 3.37 3.45 3.54 3.63 3.47 3.74 3.40 3.51 3.40 3.53
0.5 3.30 3.32 3.34 3.36 3.32 3.37 3.31 3.33 3.31 3.33
0.1 1.61 1.59 1.60 1.64 1.59 1.66 1.58 1.61 1.58 1.62
INSURANCE 0.2 1.52 1.46 1.46 1.47 1.46 1.49 1.46 1.47 1.46 1.47
0.5 1.43 1.38 1.37 1.37 1.38 1.38 1.38 1.37 1.38 1.37
0.1 2.65 2.51 2.49 249 2.50 249 2.51 249 2.51 2.49
PATHFINDER 0.2 2.54 243 2.43 243 2.43 243 2.43 243 243 2.43
0.5 2.45 2.39 2.38 2.39 2.39 2.38 2.39 2.39 2.39 2.38
0.1 | 3349 | 3325 3329 3336 | 33.24 3336 | 33.24 3331 | 33.24 3331
PIGS 0.2 | 33.15 | 3313 33.14 33.16 | 33.13 33.15 | 33.13 33.14 | 33.13 33.14
0.5 | 33.05 | 33.05 33.04 33.05 | 33.04 33.04 | 33.04 33.04 | 33.04 33.04

Table 4: Average predictive log-likelihood (rescaled by —10000; lower is better, best in bold).
n/p =1.0,2.0,5.0 showed the same value for all scores and are omitted for brevity.
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