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Abstract

We propose a method for the computational inference of directed acyclic graphical structures

given data from experimental interventions. Order-space MCMC, equi-energy sampling,

importance weighting and stream-based computation are combined to create a fast algorithm

for learning causal Bayesian network structures.
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1. INTRODUCTION

The Bayesian Network (BN) is a class of multivariate statistical models applicable to many

areas in science and technology (Beinlich, Suermondt, Chavez and Cooper 1989; Pearl 1988;

Peér 2005; Friedman 2004). In particular, the Bayesian Network has become popular as an

analytical framework in causal studies, where the causal relations are encoded by the struc-

ture (or topology) of the network. However, despite significant recent progress in algorithm

development, the computational inference of network structure is currently still very much

an open challenge in computational statistics that has remained infeasible except for cases

with a very small number of variables. The purpose of this paper is to develop the statis-

tical methods and computational algorithms for learning Bayesian Network structures from

experimental data. In section 2, we review the theory of BN and its use in causal inference.

In section 3, we discuss the order-space sampling approach recently introduced by Friedman

and Koller (2003). We show that sampling in order space induces an intrinsic bias in the

resulting network structures, and we present methods to correct this bias. In section 4, we

combine the order-graph sampler with a new energy-domain Monte Carlo method to design

an efficient algorithm for generating samples of the BN structure from its marginal posterior

distribution conditional on experimental data. In particular, to enhance the samplers ability

to cross energy barriers, we developed a novel “single memory” variant of the equi-energy

algorithm. We also present a stream-based computation that greatly reduces the complexity

of evaluating the posterior score of a structure. In section 5 we present numerical results to

document the effectiveness of the method. On random BN of various sizes, our approach

was able to predict causal edges with AUC (area under the ROC curve) approaching 95%

while the AUC for direct graph samplers never exceeds 75%. In section 6, we apply the

new algorithm to the study of the signal transduction network in human T-cells. The prob-

lem is to reconstruct a part of the network topology from polychromatic flow cytometry

data generated after selected vertices of the network are experimentally perturbed. Besides

demonstrating the utility of our approach, this example is of considerable current interest to
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the emerging field of systems biology. Finally, in section 7, we discuss direction for future

research and possible extensions of the methodology.

2. BAYESIAN NETWORKS IN CAUSAL INFERENCE

2.1 Graphical Models

In a Bayesian Network model, the joint distribution of a set of variables V = {V1, . . . , Vn} is

specified by a decomposition

P (V ) =
n∏

i=1

P
(
Vi | ΠG

i

)
(1)

where ΠG
i , a subset of {V1, . . . , Vn} \ Vi, is called the parent set of Vi. By using directed

edges to connect each variable to its children variables, we can construct a graph G to

represent the structure (or topology) of the network. In (1), the superscript G makes it

explicit that the parent set for Vi is dependent on the structure of the network. Clearly,

in order for (1) to define a joint distribution, a variable cannot serve as a child of its own

descendants, i.e. G must be acyclic. Thus the structure graph G for a BN is a directed acyclic

graph (DAG). There are many excellent treatments of graphical models and conditional

independence structures e.g. Lauritzen and Spiegelhalter (1988), Lauritzen (1996), Pearl

(2000b).

In this paper we study only the discrete case where each Vi is a categorical variable

taking values in a finite set {v1, . . . , vri
}. There are qi =

∏
Vj∈Πi

rj possible values for the

joint state ΠG
i of the parents of Vi. Given the kth joint state of its parents, Vi takes its

jth value with probability θijk. Thus the BN with a fixed structure G is parameterized by

the set of probabilities Θ =
{

θijk ≥ 0 :
∑

j θijk = 1
}

. Given N independent observations

X = {X1, X2, . . . , XN} from (1), the sufficient statistics for Θ is the set of counts {Nijk}

where Nijk equals the number of times when Vi is found in state j with its parent set in

state k. For each combination of child i and its parent set state k, the counts {Nijk, j =

1, . . . , ri} follow a multinomial distribution with Ni·k =
∑

j Nijk trials and probability vector
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(θi1k, θi2k, . . . , θirik). Thus the data distribution is a product multinomial

P (X, Θ,G) =
n∏

i=1

qi∏
k=1

(
Ni·k

Ni1kNi2k · · ·Nirik

)
θNi1k

i1k · · · θ
Nirik

irik
(2)

Example 1 A 4-vertex Bayesian Network

A 4-vertex Bayesian Network, shown in Figure 1, is specified by

P (v1, v2, v3, v4) = P (V2 = v2 | V3 = v3, V4 = v4) P (V3 = v3 | V4 = v4)

× P (V4 = v4 | V1 = v1) P (V1 = v1)
(3)

1

4

3

2

Figure 1: Structure of the Bayesian Network specified by (3).

Suppose 8 independent observations from (3) are obtained and shown in Table 1, then

the sufficient statistics Nijk can be obtained from simple counting in the table. For example,

N311 = # {V3 = 1, V4 = 1} = 2, N24(1,3) = # {V2 = 4, (V3, V4) = (1, 3)} = 1.

Since any discrete multivariate distribution can be represented by (1) and (2), the class of

Bayesian Network models is too general to be useful, unless suitable assumptions are made

on the network structure. A natural assumption is that the graph should be sparse. This

is encoded by specifying a prior distribution for the graph that penalizes for the number of

edges, i.e. for some 0 < γ < 1,

P (G) ∝ γ
Pn

i=1 |Πi| =
n∏

i=1

γ|ΠG
i | (4)
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V1 V2 V3 V4

1 2 1 1 1

2 1 1 1 1

3 2 4 1 3

4 1 1 3 1

5 1 2 2 2

6 1 3 3 3

7 1 1 3 1

8 3 2 3 3

Table 1: 8 observations from the graph defined by (3).

The prior on the Θ parameters is usually chosen to be a product Dirichlet distribution

P (Θ | G) =
n∏

i=1

qi∏
k=1

Γ (αi·k)

Γ (αi1k) · · ·Γ (αirik)
θαi1k−1

i1k · · · θαirik−1

irik
(5)

where αijk = α
riqi

. With this specification for the prior P (Θ,G) = P (Θ | G) P (G), we

obtain the posterior distribution

P (Θ,G | X) =
n∏

i=1

γ|ΠG
i |

qi∏
k=1

(
Ni·k

Ni1kNi2k · · ·Nirik

)
× Γ (αi·k)

Γ (αi1k) · · ·Γ (αirik)

× θNi1k+αi1k−1
i1k · · · θNirik+αirik−1

irik

(6)

Integrating out Θ we obtain, in closed form (Cooper and Herskovits 1992),

P (G | X) =
n∏

i=1

γ|ΠG
i |

qi∏
k=1

Γ(αi·k)

Γ(αi·k + Ni·k)

ri∏
j=1

Γ(Nijk + αijk)

Γ(αijk)
(7)

Note that both (6) and (7) depend also on hyperparameters γ and α. The marginal

posterior distribution in (7) contains all the information for the network structure G provided

by the data. The main purpose of this paper is to introduce computational methods for the
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inference of G starting from P (G | X). First, however, we must discuss some conceptual

issues in the use of Bayesian Networks in causal inference.

2.2 Causal Networks and Experimental Data

In general, the formulation of a Bayesian Network as a graphical model for a joint distribu-

tion, as in Section 2.1, is not sufficient for causal inference. To illustrate this by a simple

example, suppose we want to interpret the directed edges in Figure 1 as causal relations we

will immediately run into the difficulty that p(v1, v2, v3, v4) can also be written as

P (v1, v2, v3, v4) = P (V2 = v2 | V3 = v3, V4 = v4) P (V3 = v3 | V4 = v4)

× P (V1 = v1 | V4 = v4) P (V4 = v4)
(8)

which leads to the graph in Figure 2. Although both graphs (Figure 1 and Figure 2)

represent exactly the same joint distribution, the direction of the edge between V1 an V4 is

reversed. Clearly, only one of these can have a causal interpretation.

3

2 4

1

Figure 2: Network implied by an alternative decomposition.

Thus, the use of the BN model in causal inference depends on the existence of a special

decomposition (assumed to be (3) in this example and (1) in general). The conditional

probabilities in this special decomposition admit an interpretation that is independent of the

joint distribution. In fact, we regard these probabilities, referred to as causal probabilities, as

the building blocks that allow the specification of many related joint probability distributions

under experimental intervention. For example, the causal probability P (V4 = a | V1 = b) in
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the specification of p (·) in Example 1 is assumed to be the same as P (V4 = a | V1 set to b),

i.e. the probability of observing V4 = a when V1 is experimentally fixed to be b, with

the implicit assumption that once the value of V1 is fixed experimentally, the distribution

of V4 is also fixed regardless of the intervention on any other variables in the network.

This is the unique characteristic of causal probabilities. A non-causal probability such as

P (V1 = b|V4 = a) can only be interpreted as a conditional probability derived from the joint

distribution, i.e. as ∑
v2

∑
v3

p (b, v2, v3, a)∑
v1

∑
v2

∑
v3

p (v1, v2, v3, a)

where p (v1, v2, v3, v4) is given in Example 1. Note that this is not the same as the probability

P (V1 = b | V4 set to a), which in this case is just the casual probability P (V1 = b). For a

comprehensive treatment of intervention and causal modeling see Pearl (2000a).

In general, unless the network structure is already known, the causal probabilities can-

not be inferred from observational data alone. Causal relations can only be learned from

data obtained through experimental interventions (experimental data). Such interventions

typically allow us to fix the value of some of the variables and then observe what happens to

the other variables. The question, then, is how to compute the posterior distribution for the

structure G given such experimental data. Once the structure is known, it is easy to infer

the causal probabilities.

The answer to this key question, first given in Cooper and Yoo (1999), is remarkably

simple. To explain the logic, consider case three in Table 1 of Example 1. If this data point

is observational, according to (3) it contributes a factor (to the likelihood) equal to

θ24(1,3)θ313θ432θ12Φ (9)

where the notation Φ denotes the null state because V1 has no parents, and (1, 3) denotes

the joint state of the parent set of V2. Thus the observation of this data point results in the

increment (by 1) of the counts

N24(1,3), N313, N432 and N12Φ
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in the sufficient statistics {Nijk}.

Next, consider the data point (V1, V2, V3, V4) = (2, 4, 1∗, 3) where the notation 1∗ means

that V3 is set to be 1 by experimental intervention. Then, according to the causal interpreta-

tion of the probabilities in the decomposition in Example 1, the likelihood factor contributed

by this data point is now given by (9) with θ313 omitted because there is no need to include

the probability of observing V3 = 1. Thus, the only effect of the experimental intervention

is that a corresponding data point will lead to increments of the sufficient statistics {Nijk}

in the usual way, except when Vi = j is set by the experimental intervention. Once the

sufficient statistics are computed in this way, we can continue to use (7) for the marginal

posterior of G given the experimental data.
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3. SAMPLING BAYESIAN NETWORKS

3.1 Graph-space Sampling

The size of the space of directed acyclic graphs is 2O(n2), which is super-exponential in n,

the number of vertices of the graph (Chickering, Heckerman and Meek 2004). For example,

for n = 5, 10 and 40 there are 29281, 4.17× 1018 and 1.12× 10276 graphs respectively.

While large, the space of DAGs is finite and in principle any graph can be reached by

repeated applications of local moves chosen from a well-defined set. A minimal set of such

moves include adding or deleting single edges (Chickering 2002). Let [Vj, . . . , Vi] denote a

path of directed edges connecting Vj to Vi. We say that this path belongs to G if all edges in

the path are directd edges in G. Then, the set of local moves that add an an edge to graph

G is

nbh (G)+ = {add Vi → Vj : there is no path in G leading from Vj to Vi} (10)

and the set of local moves that removes an edge from G is

nbh (G)− = {delete Vi → Vj : Vi → Vj ∈ G} (11)

the set of all possible local moves is defined as nbh (G) = nbh (G)+ ∪ nbh (G)−.

Madigan and York (1995) proposed the use of the Metropolis-Hastings (MH) algorithm to

sample structures according to their posterior distributions (e.g. (7)). Briefly, this algorithm

works as follows: From a starting point G(t) we propose a move uniformly at random from

M ∼ nbh
(
G(t)

)
and apply it to the graph to obtain G ′ allowing G(t+1) to be defined as the

random variable

G(t+1) =


G ′, min

(
1,

π(G′)|nbh(G(t))|
π(G(t))|nbh(G′)|

)
G(t), otherwise

(12)

where π(G) ∝ P (G | X).

The introduction of Markov Chain Monte Carlo methods offered an attractive approach

to the computational inference of Bayesian network structures. Because many structures are

generated in the sampling process, inference of graph features, such as the presence/absence

of an edge, can be obtained by averaging over the sampled structures. For discussion of the
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advantage of model averaging over inference based on a single model (structure) obtained

by heuristic optimization methods, see Cooper and Herskovits (1992) and Madigan, Raftery,

York, Bradshaw and Almond (1994).

However, the algorithm only works well for network with a very small number of variables.

As a simple example, we consider the space of 4 vertex graphs, which has 543 members

allowing for brute force calculations. Figure 3 shows two sets of chains. The first chain

is from 200 simulated observations on a simple posterior in the space of 4 vertex DAGS

while the second set of 4 chains are run using 750 simulated observations. We see that as

the sample size increases, the chains mix very slowly due to the more peaky nature of the

posterior in large samples, causing the MH sampler to be trapped in local modes.
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Figure 3: (a) An MCMC of 1000 steps on a posterior distribution obtained from 200 obser-

vations.(b) Four MCMC chains of 1000 steps each on a posterior distribution obtained from

750 observations. There are 543 circles representing the graphs with circle size proportional

to the probability of the graph.
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3.2 Order-space Sampling

As directed acyclic graphs are equivalent to partial orderings of the vertices, there exists

at least one total ordering of the vertices, denoted @, such that Vi ≺ Vj if Vi ∈ Πj. Each

of these total orderings is known as a “topological sort” or “linear extension” of the graph

G. Cooper and Herskovits(Cooper and Herskovits 1992) exploited this fact to reduce the

amount of computation required to find an optimal graph by assuming the knowledge of the

ordering of the vertices. Suppose the variables are indexed according to a known ordering,

then the parents of Vj can only come from V1, . . . , Vj−1, that is, parents are only chosen from

elements that precede Vj in the ordering eliminating the need for cycle checking. Thus, the

optimization of the parent sets Πi, i = 1, 2, . . . , n can be performed independently rather

than jointly. If the maximum in-degree (i.e. the maximum size of a parent set) is assumed

to be bounded, then the search for the optimal structure compatible with a given ordering

can be performed in time complexity polynomial in n.

Let us now consider the computation of the posterior probability of a given order @

defined as a sum over all graphs consistent with this order:

P (@) ∝
∑
G∈G@

P (G) =
∑
G∈G@

n∏
i=1

P
(
Vi, Π

G
i

)
(13)

where G@ is defined as

G@ =
{
G : ΠG

i ≺@ Vi

}
(14)

Brute force summation is infeasible since even if the maximum in-degree is bounded, the

number of DAGs consistent with an order is still 2O(n log(n)). Friedman and Koller (2003)

made the key observation that that this summation can also be computed efficiently based

on a similar argument as in the optimization case, which the attribute to Buntine (1991).

Specifically, Buntine (1991) showed that

P (@) ∝
n∏

i=1

∑
Πi∈Π@

i

P (Vi, Πi) (15)

where Π@
i is the collection of admissible parents sets for i in the order @. This reduces the
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computational complexity from O
((

n
k

)n/2
)

to O
(
n
(

n
k

))
where 1 ≤ k ≤ n−1 is the maximum

in-degree (Dash and Cooper 2004).

With an efficient computation of P (@) in hand, Friedman and Koller (2003) then intro-

duced a two-stage algorithm for sampling DAGs.

• Use the Metropolis-Hasting algorithm to sample the order @ according to its probabil-

ity, (15). Note that this step is only possible because P (@) can be evaluated efficiently.

Specifically, the chain is first initialized with a random permutation of the ordering.

Moves are proposed by the swapping of one or more elements in the ordering. Other

moves that maintain the detailed balance are possible, “deck cutting” moves and spe-

cific crossover moves from the Traveling Salesman problem domain are also possible,

though we have not found that they do much to improve performance.

• Given an order @ generated as above, sample a network structure G from the space of

DAGS compatible with this order according to the conditional probability distribution.

This is easy as each Vi can be independently sampled from @ by only considering the

proper term of the product in (15) to obtain each Πi.

3.3 Order-Graph Sampling

While the Friedman-Koller (FK) algorithm is an important advance by its virtue of fast

mixing, the BN structures generated by the FK algorithm does not follow the correct pos-

terior distribution. The difficulty is caused by the fact that the order @ is not a function of

the structure G. A graph may be compatible with more than one order so that the orders

do not induce a partition in DAG space. The problem cannot be solved by defining the

graph-to-order function by arbitrarily choosing one of the many orders (say the one closest

to a pre-specified order) compatible with a given graph G as its image. If we do so, then

although this order variable will have a well-defined posterior distribution, it will be different

from that given by (13). In other words, the probability distribution in order-space targeted

by the FK sampling is not a true marginal posterior distribution of a function of the variable

11



G. This fact induces an intrinsic bias in the samples generated from the FK algorithm so

that they can no longer be expected to follow the correct posterior distribution.

Example 2

To illustrate this bias, consider the trivial example of a 2 vertex problem, which has 3 possible

graphs: V1 → V2, V1 ⊥ V2 and V1 ← V2 with assigned probabilities P (V1 → V2) = 1
6
,

P (V1 ⊥ V2) = 2
6

and P (V1 ← V2) = 3
6
. The orderings V1V2 and V2V1 have probabilities

6
8

(
1
6

+ 2
6

)
= 3

8
and 5

8
respectively. Calculating the probabilities of the graph via the orderings

gives

P (V1 → V2) = P (V1V2) P (V1 → V2 | V1V2) =
3

8

1

3
=

1

8

P (V1 ⊥ V2) = P (V1V2) P (V1 ⊥ V2 | V1V2)

+ P (V2V1) P (V1 ⊥ V2 | V2V1) =
3

8

2

3
+

5

8

2

5
=

1

2

P (V2 ← V1) = P (V2V1) P (V1 ← V2 | V2V1) =
5

8

3

5
=

3

8

As we can see, the true probabilities are such that P (G1) < P (G2) < P (G3) while the

probabilities calculated using the orderings instead satisfy P (G1) < P (G2) > P (G3).

In general, the expectation under the FK sampler is given by the following result.

Lemma 1

Let f(·) be a function on the space of DAGs and G ′ be a random graph generated by the

FK algorithm. Then

E [f(G ′)] =

∑
G | @G |f(G)P (G)∑

G | @G |P (G)
(16)

12



Proof.

E [f(G ′)] =
∑

@

P (@)∑
@ P (@)

∑
G∈G@

f(G) P (G)∑
G∈G@ P (G)

=

∑
@

∑
G∈G@ f(G)P (G)∑

@ P (@)

=

∑
G |@G| f(G)P (G)∑

G |@G|P (G)

Lemma 1 shows that G ′ generated by the FK sampler is distributed as

P (G ′) ∝ | @G |P (G) (17)

which is generally biased due to the extra factor |@G|. In small problems like our 4 vertex

example, we know how many orders are consistent with each graph allowing us to correct the

bias introduced by the overlap. However, in large problems the calculation of the overlap is

infeasible as the linear extension counting problem is #P-hard (Brightwell and Winkler 1991).

To overcome this problem we propose the following solution. First, we sample from each

unique sampled order, @, with replacement until we have sampled k unique graphs such that

k∑
i=1

P (Gi |@) ≥ (1− ε) (18)

Let U be the union of the graph samples from all orders. We treat U as an importance

weighted sample, where the weight from a graph Gi in U is P (Gi)P
G∈U P (G)

and P (G) is given by

(7). By ensuring that we sample most of the graphs that make up the posterior score of an

order and assuming that our sampler obtains samples from high scoring regions of the order

space, which contain these high probability graphs, we can assure ourselves that we have

sampled most of the high scoring regions of the graph space as well. Figure 4 shows that in

the 4 vertex problem, this method eliminates the bias induced by order sampling.

To assess the waiting time until (18) to have been satisfied, let gi, i = 1, . . . , I be the

distinct graphs in @ ordered such that pi = P (gi |@) satisfy p1 ≥ p2 ≥ · · · ≥ pI . Draw

graphs from @, with replacement, according to pe.
13



Let

Ii(n) =

 1, gi has not been seen in n trials

0, otherwise

which has expectation E [Ii(n)] = (1− pi)
n.

Let Un be the sum of probabilities for graphs not seen in n trials,

Un =
I∑

i=1

Ii(n)pi

with expectation E [Un] =
∑I

i=1 pi(1− pi)
n.

Now, assume that pi+1 ≤ αpi for some 0 < α < 1 and choose k large enough to satisfy

(18), namely,

k ≥
log

(
ε(1−α)

p1

)
log(α)

Then,

E [Un] ≤
k∑

i=1

pi(1− pi)
n + ε ≤ k(1− pk)

n + ε

choosing n so that k(1− pk)
n ≤ ε it follows that if

n ≥
log

(
ε
k

)
log (1− pk)

then we have

E [Un] ≤ 2ε (19)

This analysis shows that Un can be bounded by γ if n is of order log
(

log(1/γ)
γ

)
.

Lemma 2

If pi+1 ≤ αpi, ∀ i and

n ≥
log

(
γ2

k

)
log(1− pk)

where

k =
log

(
γ2(1−α)

p1

)
log(α)

then P (Un > γ) ≤ 2γ

14



Proof. Applying the Markov Inequality we have

P (Un > γ) ≤ E [Un]

γ

where E [Un] ≤ 2ε from (19). The result follows by setting ε = γ2.

For example, in a series of 10 vertex simulations we found an average k of 232 unique

graphs required to achieve (1 − ε) = .95, requiring an average of 737 samples per ordering

and an average estimated α value of 0.81. Since sampling graphs given an order is a fast

computation, this step consumes negligible time compared to the time required to sample

the necessary orders. Finally, we note that, before sampling, one can first compute the graph

with the highest probability within an order. This can often reduce the number of samples

required for (18). To see the difference between the biased Order MCMC results and our

bias-corrected samples we can compute the posterior probability for all graphs in the 4 vertex

problem exactly as well as using Order MCMC and Order-Graph, shown in Figure 4.
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Figure 4: Order MCMC posterior probability estimates and Order-Graph posterior proba-

bility estimates, as compared to the true posterior probabilities for the 4 vertex problem.
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4. IMPLEMENTING THE ORDER-GRAPH SAMPLER

4.1 Single Queue Equi-Energy Sampling

While the Order MCMC approach greatly improves mixing compared to MCMC in the space

of DAGs it is still susceptible to local trapping. We first observed this problem in real-world

data sets such as the samples from the 11 vertex problem given in Figure 5, which shows the

energies of 10 different chains run for 100, 000 iterations. We can also see this problem in

simulated data, such as the 32 chains of a simulated 10 vertex data set shown in Figure 6.

0 20 40 60 80 100

33
80

0
34

20
0

34
60

0

Iteration x 1000

E
ne

rg
y

Figure 5: Energies for samples from 10 runs of the Order MCMC sampler in an 11 vertex

problem. As we can see there are several local minima for the sampler often quite far from

the global minimum energy, which is discovered by one run of the sampler. Though not

visible due to scale, each chain is still moving in a small region around the trapping point

with an acceptance rate of around 30%.

Thus, even when sampling is performed over order space ,there is a need to use advanced

MCMC methods that are less susceptible to local trapping. Here, we have chosen to use Equi-

Energy sampling(Kou, Zhou and Wong 2006) for our software implementation. Briefly, like

other population-based MCMC approaches the Equi-Energy sampler relies on a temperature
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Figure 6: Energies for another set of Order MCMC chains run on a simulated 10 vertex data

set. In this case 32 chains are run for 100, 000 iterations with a similar trapping phenomenon.

In this data set the trapping locations are apparently closer in order space allowing for some

crossing between local minima. However, most of the chains once trapped in a local minima

tend to stay there.

ladder 1 = T1 < · · · < TI that are used to define I Boltzmann distributions. In addition,

the EE Sampler uses a ladder of truncation energies Hmin = H1 < · · · < HI <∞ such that

tempered distributions are defined as,

πi(x) = exp

(
−max [H(x), Hi]

Ti

)
(20)

Each chain is then started in a staggered fashion such that the ith chain starts B + N

iterations after the i+1 chain, where B+N are the number of burn-in and collected iterations

of the chain of interest π1(x). The chains themselves run using the normal Metropolis-

Hastings moves, though better results are usually obtained from scaling the step-size of the

higher temperature chains as they are more likely to accept a larger move. This allows the

high temperature chains to move more quickly through the space to find samples for later

communication to lower temperature chains. In the case of the Order-Graph Sampler the step

size adjustment takes the form of a generalized swap move. In the ith chain, each position has

a pi ∝ β1/Ti probability of being selected for a swap move. With positions s1, . . . , sk selected

for swap we then perform a “cynlindrical shift” operation such that @si
←@si+1

, @si+1
←@si+2

17



and @sk
←@s1 . Typically we aim to select, on average, n

4
and 2 positions, respectively for

this highest temperature and lowest temperature chains. In our experience, this simple rule

gives satisfactory results for most problems.

In the original Equi-Energy sampler, communication between the ith and the i + 1th chain

takes places through the use of a set of energy rings. After burn-in, the samples from the

ith chain are recorded in a set of energy bins D̃0
i , . . . , D̃

I
i where D̃j

i contains samples with

energies in the range (Hi, Hi+1] with H0 = −∞ and HI+1 = ∞. These bins are used to

help creating fast mixing for the i + 1th chain through the equi-energy jump. In addition to

the usual Metropolis moves, the i + 1th chain will with probability q propose an equi-energy

jump. The jump is proposed by selecting a sample y from the same bin that would hold the

ith chain’s current state x
(t)
i from among the D̃0

i , . . . , D̃
I
i bins. This ensures that y will be

relatively close in the energy space while potentially quite distant in the state space, such as

the space of total orderings or graphs.

However, as shown in Figure 7, having separate sets of energy bins between each chain

can still slow down communication of low energy states discovered in high temperature

chains to the low temperature chains. This seems to be especially prevalent in situations

such as Order sampling where we observe empty regions of the energy space, particularly

between a small set of very low energy states and a much larger set of states with relatively

higher energy. To allow for instant communication between all of the chains we modify the

standard Equi-Energy sampler with a variant we call the “Single Queue Variant.” In this

variant, rather than a set of rings between each pair of chains, the ith chain can now propose

a sample from any of the higher temperature chains by having the ith chain draw samples

from the union of the relevant energy bin from all higher temperature chains. This requires

a change to the transition kernel of the energy jump acceptance probability calculations as

the samples are now drawn from a mixture of all higher temperature distributions rather

than a single distribution. We track the number of samples, Mi, placed into the energy rings

18



Figure 7: An example of the Order-Graph Sampler’s Equi-Energy implementation becoming

trapped in an 11 node problem when using the standard implementation of the Equi-Energy

Sampler. Despite the fact that higher temperature chains, shown in gray, find a “good”

set of states, the temperature of interest, shown in black, fails to converge properly. The

reason is that a low energy states discovered by a high temperature chain is only used in

the equi-energy jumps of the next highest energy chain, it is not directly accessible by lower

temperature chains.
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by each chain, so that the proposal transition kernel is now computed as

Q(y; x
(t)
i ) =

I∑
j=i+1

wjπj(y) (21)

where wj = Mj/
∑I

k=i+1 Mk.

4.2 Efficient Order Scoring

The key to any Order sampler, be it Friedman-Koller Order MCMC or the population-based

samplers of Order-Graph MCMC, is the ability to quickly assess the posterior probability

of an ordering. The standard method for scoring DAGs realizes performance through the

use of a family score cache that stores the local score for a particular Vi, Πi configuration

and it’s probability. For optimization and sampling in the space of DAGs, typically, the

number of changed configurations per move is limited to a single parent set so this scheme

is sufficient for fast calculation. Order scoring, on the other hand, can result in a large

number of changes and each scoring pass involves a large number of family checks making

the cache-based structure a less obvious choice for efficient calculation.

Our implementation instead relies on a stream-based approach similar to the Google

MapReduce (Dean and Ghemawat 2004) architecture. We precompute an initial parent-set

database with all possible parent sets from size 0 to size k, where k � n. Each entry

in the database consists of a key, specifying the parent set Πj and a vector of n values

containing log P (Vi, Π
j) or −∞ if i ∈ Πj. To calculate an order probability, consider the

total ordering, @. We begin by initializing an intermediate probability vector (s1, . . . , sn) for

each V1, . . . , Vn. Then we calculate the position vector (p1, . . . , pn) such that pi is the index

of Vi in @. We then consider each record in the database in an arbitrary order, possibly in

parallel, first calculating the rightmost position of the elements in Πj, pmax = maxk∈Πj pk.

We then update the intermediate scoring vector as follows,

si = log
(
exp(si) + P

(
Vi, Π

j
))

i =@pmax , . . . ,@n (22)

for each entry and finally calculate log P (@) =
∑n

i=1 si. An example of a single step in this

process is given in Figure 8.
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Figure 8: A single step in the order scoring process.

This approach achieved its performance through the use of a large set of pre-computed

scores that are likely to be needed and eliminating the large number of random access

lookups that are required by traditional algorithms through the use of sequential lookups

with a minimal number of lookup failures (i.e. parent set records that have no meaning

for the current ordering). Additionally, the structure of the database does not depend on

any intrinsic ordering of the parent sets such that records may be removed or added in

essentially O(1) time, allowing for the adaptive construction of the database to, for example,

accommodate parent set sizes larger than k in place of smaller, but low scoring, parent sets

over time.
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5. ALGORITHMIC VALIDATION

To validate our algorithm’s performance we conducted a number of simulation experiments

using our algorithm and several other approaches that work directly in the DAG space. In

these experiments we generated random graphs having either 8, 10, 12 or 14 vertices and

5, 000 observations from each random graph. We then sample each set of observations to

obtain artificial sample sizes of 100, 500, 1000, 2500 as well as the full 5000 observation

datasets. To obtain an average performance each combination of vertices and observations

is replicated 5 times with different values. In all cases, a prior of P (G) = γ−|E| with γ = 10

was used.

For comparison we employ three different algorithms. The first, of course, is our Order-

Graph Sampler using the Equi-Energy sampler for the Order MCMC phase. The second

is a direct DAG sampler using the Equi-Energy approach to improve mixing. Finally, we

use an importance re-weighting scheme similar to the one employed by the second phase of

the OGEE sampler. In this sampler we simply use a Greedy Search algorithm to generate

“optimal” graphs from a large number of random starting locations. We then re-normalize

this collection of graphs to obtain a properly weighted distribution on graphs.

In all three cases we choose a number of iterations such that the amount of “wall time”

(i.e. the physical time as opposed to CPU time or some other measure) for each algorithm is

roughly matched running on identical hardware and identical operating systems (an Apple

XServe cluster in this case). The DAG EE sampler was run for 100, 000 burn-in iterations

and 100, 000 iterations collected for processing, this being the fastest algorithm for a single

iteration. The greedy search algorithm was run with 100, 000 unique starting locations to

run in roughly the same amount of time. Finally, the OGEE sampler was run for 15, 000

burn-in order samples and 15, 000 collected order samples. The graph sampling process given

an order requires a negligible amount of time with at most 1000 graphs sampled from each

order and merged into a unique set.
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8 10 12 14

100 0.73 0.69 0.73 0.71

500 0.82 0.81 0.90 0.87

1000 0.87 0.84 0.92 0.89

2500 0.88 0.86 0.93 0.89

5000 0.91 0.91 0.97 0.94

Table 2: The mean AUC for the ROC curves obtained from the OGEE Sampler for each

combination of vertices and observations.

5.1 Experimental Results

To compare these posterior samples, we employed a popular technique described in the origi-

nal Order MCMC paper (Friedman and Koller 2003). In this case, the posterior graph sample

is used to calculate pairwise feature probabilities for the entire graph (i.e. P (Vi → Vj) ∀i, j).

These marginal features are then rank-ordered and a cutoff-threshold is selected and the fea-

tures above that threshold are used to construct a final graph.

By allowing this threshold to vary from 1 down to 0, we can construct receiver operator

curves (ROC), which is a common method for assessing these sorts of threshold classifiers

(Fawcett 2003) by calculating the area under this curve (AUC) with 1.0 being an ideal

classifier. Typically, an AUC above 0.9 considered to be “excellent” and an AUC above

0.8 considered to be “good.” Tables 2, 3 and 4 show the mean of 5 AUC calculations for

each combination of nodes and data under each of the three algorithms. As we can see,

the OGEE algorithm performs quite well even with relatively moderate amounts of data

achieving “good” classification results quite quickly, handily outperforming both the DAG

EE and importance re-weighting algorithms.

Interestingly, the importance re-weighting technique seems to in turn outperform the

DAG EE approach. The reason for this seems to be that the DAG EE sampler is still

not using enough starting locations and the algorithm becomes trapped at relatively low
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8 10 12 14

100 0.69 0.64 0.62 0.67

500 0.70 0.72 0.71 0.72

1000 0.77 0.72 0.75 0.73

2500 0.77 0.77 0.74 0.72

5000 0.73 0.76 0.76 0.74

Table 3: The mean AUC for the ROC curves obtained from the direct importance sampling

method for each combination of vertices and observations.

8 10 12 14

100 0.48 0.51 0.47 0.50

500 0.46 0.55 0.50 0.52

1000 0.49 0.54 0.52 0.51

2500 0.48 0.58 0.50 0.50

5000 0.49 0.58 0.50 0.53

Table 4: The mean AUC for the ROC curves obtained from the Equi-Energy DAG sampler

for each combination of vertices and observations.

probability locations. The importance re-weighting algorithm, on the other hand, gets to

attempt a large number of starting locations and, typically, “gets lucky” by finding one

particularly high probability graph that will dominate the posterior probability. In effect,

the sample is more like a single incredibly fortunate sample rather than the 100, 000 graphs

that have actually been sampled.
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6. AN APPLICATION TO FLOW CYTOMETRY DATA

6.1 Introduction

In this example, we will investigate the performance of our sampling techniques in analyzing

experimental data from a polychromatic flow cytometry experiment originally presented by

Sachs, Perez, Peér, Lauffenburger and Nolan (2005).

Polychromatic flow cytometry allows for the simultaneous probing of the phosphorylation

state of a number of different proteins within a cell. This is accomplished by first “fixing”

(i.e. killing) the cell and then staining each protein with a fluorescent marker protein which

can then be scanned by a laser tuned to a particular wavelength as each cell flows past in

a column of fluid. Importantly, this does not require cell lysis as is the case in microarray

experiments so data is collected on a cell by cell basis, leading to large amounts of data in

each experiment.

The researchers in this particular experiment chose to investigate elements of the three

major Mitogen-Activated Protein Kinase (MAPK) pathway in human CD4+ T-cells, part of

the immune system. In general, MAPK pathways are involved in a process known as “signal

transduction” (Figure 9). External stimuli are sense by cell surface markers (such as the

CD3 and CD28 in Figure 10). This signal then travels through a cascade of protein modifi-

cations (deactivation and activation) of signaling proteins known, generically, as MAPKKK,

MAPKK and MAPK, which eventually leads to changes in nuclear transcription.

In this particular experiment, 11 well-studied proteins were selected from the MAPK

pathways for fluorescent labeling. This pathway was then perturbed by 9 different stimuli,

each targeting a different protein in the selected pathway. The pathway itself is shown in

Figure 10 with the appropriate proteins highlighted, while the experimental stimuli and their

effects are summarized in Table 5.

6.2 Original Analysis

The original analysis conducted by Sachs et al. (2005) was also a Bayesian Network recon-

struction. In this case they employed the Simulated Annealing approach discussed briefly

25



Stimulus

MAPKKK

Heat Shock,
Growth Factors,

Mitogens

MAPK Kinase Kinase
e.g. Raf

MAPKK

MAPK Kinase
e.g. Mek

MAPK

Mitogen
Activated
Kinase
e.g. Erk

Figure 9: An overview of the basic structure of MAPK pathways.
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Figure 10: The known signal transduction experiment. Proteins being probed are indicated

by the darker shading, while those involved in the pathway but un-probed are indicated by

lighter shading.
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Stimulus Effect

1. CD3, CD28 General stimulation

2. ICAM2 General stimulation

3. Akt-inhibitor Inhibits Akt (-Akt)

4. G0076 Inhibits PKC (-PKC)

5. Psi Inhibits PIP2 (-PIP2)

6. U0126 Inhibits Mek (-Mek)

7. Ly Inhibits Akt (-Akt)

8. PMA Activates PKC (+PKC)

9. β2cAMP Activates PKA (+PKA)

Table 5: A summary of the 9 experimental stimuli and their effect on the proteins of

interest.

in Chapter 3. The original data set, shown in Figure 11 is continuous data that was pro-

cessed by first eliminating outliers, we assume after a log-scale transform though this is not

explicitly stated. The data were then discretized using an information preserving technique

(Hartemink 2001) and adjusted such that perturbed vertices always reflect their perturbed

values. This is necessary because some of the perturbation methods, particularly the in-

hibition, only affect the activity of the protein and not their phosphorolation so while the

activity of the protein appears to vary, its activity is in fact controlled.

After pre-processing, 500 data sets are generated. Each data set consists of 600 cells

sampled from each of the 9 experiments. Simulated annealing was used to obtain an optimal

DAG from each of the data sets. Thus, after 500 simulated annealing runs, they now have a

set of 500 DAGs each with an associated score. To estimate the marginal feature probabilities

Bootstrap samples are generated from this data set according to their scores.
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Figure 11: The data original data after a standard “Logicle” transformation, which is more

or less a log transform when values are far away from 0 and linear close to 0. This has the

effect of compressing the first two order of magnitudes into an area quite close to 0, which

is consistent with a correction for an artifact introduced by the flow cytometry process that

otherwise appears as a spurious second clustering of cells.
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6.3 Analytic Setup

Much like our experiment with the random graphs we have created a competitive experimen-

tal setting for our analysis, though we will be using a Bootstrap-based technique similar to the

original analysis rather than the Parallel Tempering or DAG Equi-Energy approaches. Our

Bootstrap implementation follows as closely as possible (Friedman, Nachman and Peér 1999)

though we employ the same efficient scoring and database mechanisms as our Order-Graph

sampler to ensure fair comparisons between running time and other performance metrics.

For the simulated annealing technique we use parameters as close as possible to the

original Sachs analysis, in this case 500 separate graphs will be generated from datasets

sampled with replacement from the complete data. Each annealing chain is then run for

100, 000 iterations with a starting temperature of 50 and a finishing temperature of 1 with

a log cooling schedule.

6.4 Results

With no “true” graph available as was the case in simulation, we compare the algorithmic

performance using a 10-fold cross validation approach. To simplify the cross validation, a

single data set consisting of 600 cells from each experiments is generated and that data set is

divided into 10 subsets containing the same number of cells from each experiment (i.e. each

subset contains 60 observations from each of the 9 experiments). Nine of these subsets are

then used to estimate a posterior distribution of graphs which are then used to predict the

remaining 10th data set. In the case of the simulated annealing algorithm, which requires

resampling, the 500 data sets are sampled with replacement from the 9 subsets rather than

the entire data as was done in the original analysis. This is repeated for each of the 10

subsets used for prediction for both algorithms. We can then obtain an average predictive

probability via model averaging for each of the 10 subsets with the scores shown in Figure 12.

As we can see, the Order-Graph sampler is consistently superior to the simulated annealing

approach.

To get an idea of the graphs being considered by each algorithm we also constructed
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Figure 12: A histogram of the scores obtained by each algorithm during Cross Validation.

The lighter bars are the simulated annealing results and the darker bars the Order-Graph

results.
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Figure 13: The simulated annealing graph reconstruction.

“mean graphs” for each algorithm by first constructing a mean graph according to each

empirical distribution generated by our Cross Validation scheme. We then took the average

of those 10 average graphs to obtain a global average for each algorithm. These graphs,

both containing 22 edges, are shown in Figure 13 for simulated annealing and in Figure 14

for the Order-Graph sampler. The running time and cross-validation results are reported

in Table 6, the most striking result being the time differential between the two techniques.

To generate 500 graph samples via simulated annealing required between 3 and 4 average

depending on server conditions whereas the Order-Graph sampler required between 3 and 5

minutes to generate 15, 000 graph samples. Additionally, when compared with the “known”

graph shown in Figure 10 it seems that the Order Graph sampler’s graph appears to be

qualitatively closer to the graph obtained via literature search.
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Figure 14: The average graph constructed from the average of each subset in the cross

validation experiment

Simulated Annealing Order-Graph

Running Time 3-4 hours 3-5 minutes

Average Score -3264.1 (93.52) -2510.6 (63.39)

Table 6: The results for the cross validation experiment.
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7. CONCLUSIONS AND FUTURE WORK

With the development of the Order-Graph sampling approach, we can now address complete

data problems with reasonable confidence in problems of moderate size. This has been

accomplished through a combination of methods: extending the already powerful Order

MCMC approach with equi-energy sampling, bias-corrected graph sampling, and stream-

based computation. Currently, our implementation pre-computes the scores for all (Vi, Πi)

combinations subject to a bound on |Πi|. This bound on the maximum in-degree can be

relaxed by adapting the database to exchange non-favorable combinations with selected

combinations with higher in-degrees than the initial bound. This should be explored in

future implementations.

Perhaps the most important future challenge is to consider the missing data case. As

an example, we may want to study signal transduction systems with more components

than the maximum number of colors allowable by current flow cytometers. To study these

larger systems we are now developing algorithms that allow us to perform experiments with

data that is “missing by design,” such that the targets of the dyes are varied under the

same set of experimental conditions to obtain readings for different proteins under the same

conditions. The hope is that the large number of single cell samples will allow us to “mesh”

our experiments to construct a posterior graph sample for all of the elements. The complete-

data algorithms discussed in this paper will be useful as a component of the algorithms

in the incomplete data inference, a problem likely to be a major focus of computational

development in the coming years.

8. ACKNOWLEDGMENTS

This research was supported by NSF grant DMS-0505732 to Wing Hung Wong. We would

like to thank Rob Tibshirani for pointing us towards multiparameter flow cytometry as a rich

source of data and Trevor Hastie for suggesting the cross-validation approach for assessing

the quality of obtained graphs.

33



REFERENCES

Beinlich, I., Suermondt, G., Chavez, R., and Cooper, G. F. (1989), The ALARM Monitoring

System: A Case Study with two probabilistics inference techniques for belief networks,,

in The second European Conference on Artificial Intelligence in Medicine, Springer-

Verlag.

Brightwell, G., and Winkler, P. (1991), Counting linear extensions is #P-complete,, in TOC

’91: Proceedings of the twenty-third annual ACM symposium on Theory of computing,

ACM Press, pp. 175–181.

Buntine, W. L. (1991), Theory Refinement on Bayesian Networks,, in Proceedings of the 7th

Annual Conference on Uncertainty in Artificial Intelligence (UAI-91).

Chickering, D. M. (2002), “Optimal Structure Identification With Greedy Search,” Journal

of Machine Learning Research, 3, 507–554.

Chickering, D. M., Heckerman, D., and Meek, C. (2004), “Large-Sample Learning of Bayesian

Networks is NP-Hard,” Journal of Machine Learning Research, 5, 287–1330.

Cooper, G. F., and Herskovits, E. (1992), “A Bayesian Method for the Induction of Proba-

bilistic Networks from Data,” Machine Learning, 9, 309–347.

Cooper, G. F., and Yoo, C. (1999), Causal Discovery from a Mixture of Experimental and

Observational Data,, in Proceedings of the 15th Conference on Uncertainty in Artificial

Intelligence (Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence

1999).

Dash, D., and Cooper, G. F. (2004), “Model Averaging for Prediction with Discrete Bayesian

Networks,” Journal of Machine Learning Research, 5, 1177–1203.

Dean, J., and Ghemawat, S. (2004), MapReduce: Simplified Data Processing on Large Clus-

ters,, in OSDI’04: Sixth Symposium on Operating System Design and Implementation.

34



Fawcett, T. (2003), ROC Graphs: Notes and Practical Considerations for Data Mining

Researchers,, Technical Report HPL-2003-4, HP Laboratories, 1501 Page Mill Road,

Palo Alto, CA 94304.

URL: citeseer.ist.psu.edu/fawcett03roc.html

Friedman, N. (2004), “Inferring Cellular Networks Using Probabilistic Graphical Models,”

Science, 303.

Friedman, N., and Koller, D. (2003), “Being Bayesian about Network Structure: A Bayesian

Approach to Structure Discovery in Bayesian Networks,” Machine Learning, (50), 95–

126.

Friedman, N., Nachman, I., and Peér, D. (1999), Learning Bayesian Network Structure

from Massive Datasets: The “Sparse Candidate” Algorithm,, in Proceedings of the 15th

Conference on Uncertainty in Artificial Intelligence (Proceedings of the 15th Conference

on Uncertainty in Artificial Intelligence 1999).

Hartemink, A. J. (2001), Principled Computational Methods for the Validation of and Dis-

covery of Genetic Regulatory Networks, PhD thesis, Massachusetts Institute of Tech-

nology.

Kou, S., Zhou, Q., and Wong, W. H. (2006), “Equi-Energy Sampler: Applications in Statis-

tical Inference and Statistical Mechanics,” Annals of Statistics, 34(4).

URL: http://arxiv.org/abs/math.ST/0507080

Lauritzen, S. L. (1996), Graphical Models Oxford: Clarendon Press.

Lauritzen, S. L., and Spiegelhalter, D. J. (1988), “Local Computations with Probabilities on

Graphical Structures and Their Application to Expert Systems,” Journal of the Royal

Statistical Society. Series B (Methodological), 50(2), 157–224.

35



Madigan, D., Raftery, A. E., York, J., Bradshaw, J. M., and Almond, R. G. (1994), Strategies

for Graphical Model Selection,, in Proceedings of the 4th International Workshop on

Artificial Intelligence and Statistics.

Madigan, D., and York, J. (1995), “Bayesian graphical models for discrete data,” Interna-

tional Statistical Review, 63, 215–232.

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence San Mateo: Morgan Kaufmann.

Pearl, J. (2000a), Causality: Models, Reasoning and Inference, Cambridge, United Kingdom:

Cambridge University Press.

Pearl, J. (2000b), “The Logic of Counterfactuals in Causal Inference,” Journal of the Amer-

ican Statistical Association, 95(450), 428–435.

Peér, D. (2005), “Bayesian Network Analysis of Signaling Networks: A Primer,” Science

STKE, pp. 1–12.

Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (1999).

Sachs, K., Perez, O., Peér, D., Lauffenburger, D. A., and Nolan, G. P. (2005), “Causal

Protein-Signalling Networks Derived from Multiparameter Single-Cell Data,” Science,

308, 523–529.

36


