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Abstract

We describe scoring metrics for learning
Bayesian networks from a combination of
user knowledge and statistical data. Previ-
ous work has concentrated on metrics for do-
mains containing only discrete variables, un-
der the assumption that data represents a
multinomial sample. In this paper, we ex-
tend this work, developing scoring metrics for
domains containing only continuous variables
under the assumption that continuous data is
sampled from a multivariate normal distribu-
tion. Our work extends traditional statistical
approaches for identifying vanishing regres-
sion coefficients in that we identify two im-
portant assumptions, called event equivalence
and parameter modularity, that when com-
bined allow the construction of prior distri-
butions for multivariate normal parameters
from a single prior Bayesian network speci-
fied by a user.

1 Introduction

Several researchers have examined methods for learn-
ing Bayesian networks from data, including Cooper
and Herskovits (1991,1992), Buntine (1991), Spiegel-
halter et al. (t993), and Heckerman et al. (1994)
(herein referred to as OH, Buntine, SDLC, and HGC,
respectively). These methods all have the same basic
components: a scoring metric and a search procedure.
The metric computes a score that is proportional to
the posterior probability of a network structure, given
data and a user’s prior knowledge. The search proce-
dure generates networks for evaluation by the scoring
metric. These methods use the two components to
identify a network or set of networks with high re!-
ative posterior probabilities, and these networks are
then used to predict future events.

*Author’s primary affiliation: Computer Science De-
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Previous work has concentrated on domains contain-
ing only discrete variables, under the assumption that
data is sampled from a multivariate discrete distribu-
tion. In this paper, we develop metrics for domains
containing only continuous variables, under the as-
sumption that continuous data is sampled from a mul-
tivariate normal (Gaussian) distribution. Previously,
when working with continuous variables, the standard
solution had been to transform each such variable 2i to
a discrete one by splitting its domain into several mu-
tually exclusive and exhaustive regions. Our metrics
eliminate the need for this transformation. In addi-
tion, our metrics have the advantage that they use the
low polynomial dimentionality of the parameter space
of a mulitivariate normal distribution, whereas their
discrete counterparts often require a parameter space
that is exponential in the number of domain variables.

Our work can be viewed as an extension of traditional
statistical approaches for identifying vanishing regres-
sion coefficients, such as those described in DeGroot
(1970, Chapter 11). In particular, we translate two
assumptions that we identified in HGC for domains
containing only discrete variables, called parameter
modularity and event equivalence, to domains contain-
ing continuous variables. The assumption of parame-
ter modularity, addresses the relationship among prior
distributions of parameters for different Bayesian-
network structures. The property of event equivalence
says that two Bayesian-network structures that repre-
sent the same set of independence assertions should
correspond to the same event and thus receive the
same score. We show that, when combined, these as-
sumptions allow the construction of reasonable prior
distributions for multivariate normal parameters from
a single prior Bayesian network specified by a user.

Our identification of event equivalence arises from a
subtle distinction between two types of Bayesian net-
works. The first type, called belief networks, repre-
sents only assertions of conditional independence and
dependence. The second type, called causal networks,
represents assertions of cause and effect as well as as-
sertions of independence and dependence. In this pa-
per, we argue that metrics for belief networks should
satisfy event equivalence, whereas metrics for causal
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networks need not.

Our score-equivalent metrics for belief networks are
similar to the metrics described by Dawid and Lau-
ritzen (1993), except that our metrics score directed
networks~ whereas their metrics score undirected net-
works. In this paper, we concentrate on directed mod-
els rather than on undirected models, because we be-
lieve that users find the former easier to build and
interpret.

We note that much of the mathematics involved in our
derivations is borrowed from DeGroot’s book, "Opti-
mal Statistical Decisions," (1970).

2 Gaussian Belief Networks

Throughout this discussion, we consider a domain £
of n continuous variables xl,...,z~. We use p(~[~)
to denote the joint probability density function (pdf)
over ~ of a person with background knowledge ~. We
use p(e]~) to denote the probability of a discrete event
e.

A belief network for ~ represents a joint pdf over ~
by encoding assertions of conditional independence as
well as a collection of pdfs. From the chain rule of
probability, we know

(1)

For each variable x~, let YI~ C_ {xl,...,x~’_l} be a set
of variables that renders x~ and {xi,... ,x~-l} condi-
tionally independent. That is,

A belief network is a pair (Bs,]Tp), where Bs is a
belief-network structure that encodes the assertions of
conditional independence in Equation 2~ and Be is a
set of pdfs corresponding to that structure. In partic-
ular, Bs is a directed acyclic graph such that (1) each
variable in U corresponds to a node in Bs, and (2)
the paretats of the node corresponding to x~ are the
nodes corresponding to the variables in II~. (In the
remainder of this paper, we use x~ to refer to both the
variable and its corresponding node in a graph.) As-
sociated with node z~ in Bs are the pdfs p(zilIIi,~).
Bp is the union of these palls. Combining Equations 1
and 2, we see that any belief network for £ uniquely
determines a joint pdf for ~. That is,

n

i----1

A minimal belief network is a belief network where
Equation 2 is violated if any arc is removed. Thus,
a minimal belief network represents both assertions of
independence and assertions of dependence.

Let us suppose that the joint probability density func-
tion for Z is a multivariate (nonsingular) normal dis-

tribution. In this case, we write

~ (2r)-"/~lSl-ll~-~t~(~-,~)’s-’(~-,~)
where r~ is an n-dimensional mean vector, and ~ :
(~ri~) is an n x n covariance matrix, both of which are
implicitly functions of ~, and where [EI is the deter-
minant of E. We shall often find it convenient to refer
to the precision matrix W = E-z, whose elements are
denoted by wij.

This distribution can be written as a product of condi-
tional distributions each being an independent normal
distribution. Namely,

o,
i-1

= + b s( s - 1Iv,)

where rn; is the unconditional mean of xl, vi is the
conditional variance of xi given values for x~,..., xl-1,
and bii is a linear coefficient reflecting the strength of
the relationship between xi and xj (e.g., DeGroot, p.
55).~ Thus, we may interpret a multivariate normal
distribution as a belief network, where blj = 0 (j < i)
implies that xj is not a parent of xi. We call this spe-
cial form of a belief network a Gaussian belief network.
The name is adopted from Shachter and Kenley (1989)
who first described Gaussian influence diagrams.

More formally, a Gaussian belief network is a pair
(Bs, Bp), where (1) B5 is a belief-network structure
containing nodes xz,..., x~ and no arc from xj to xi
whenever bij = 0,j < i, (2) Be is the collection of
parameters r~ = (m~,..., m,~), ~" = {Yl,.-., vn}, and
{bij I J < i}, and (3) the joint distribution over ~
is determined by Equations 3 and 4. Due to special
properties of nonsingular normal distributions, a min-
imal Gaussian be!ief network is one were there is an
arc from xj to xi if and only if b~.6 ~ 0.

Given a multivariate normal density, we can generate a
Gaussian belief network, and vice versa. The uncondi-
tional means r5 are the same in both representations.
Shachter and Kenley (1989) describe the general trans-
formation from ~’ and {b~j I i < j} of a given Gaus-
sian belief network G to the precision matrix W of the
normal distribution represented by G. They use the
following recursive formula in which W(i) denotes the
i x i upper left submatrix of W, ~i denotes the column
vector (b~d,..., bi-l,i) and g~ denotes the transposed

vector bi (i.e., the line vector (bl,i,..., bi-l,~)):

(5)

~The coefficients b~ can be thought of as regression co-
efficients or expressed in terms of Yule’s (1907) partial re-
gression coefficient fL



Learning Gaussian Networks 237

Figure 1: A belief-network structure for three vari-
ables.

for i > 0, and W(1) = 1~. Equation 5 plays a key role
in this paper.

For example, suppose xl -: n(ml,l/vl),z~ :
’ n(-~2,1/v2), and ~ = ,(r~ + b13(x, - "~1) + b~(~ -
m~), 1/v3)- The belief-network structure defined by
these equations is shown in Figure 1. The precision
matrix is given by

The Gaussian-belief-network representation of a mul-
tivariate normal distribution is better suited to model
elicitation and understanding than is the standard rep-
resentation [Shachter and Kenley, 1989]. To assess a
Gaussian belief network, the user needs to specify
(1) the unconditional mean of each variable z~ (mi),
(2) the relative importance of each parent xj in de-
termining the values of its child xi (bij), and (3) a
conditional variance for xi given that its parents are
fixed (vi). Equation 5 then determines W. In con-
trast, when assessing a normal distribution directly,
one needs to guarantee that the assessed covariance
matrix is positive-definite--a task done by altering in
some ad hoc manner the correlations stated by the
user.

3 A Metric for Gaussian Belief
Networks

We are interested in computing a score for a Gaus-
sian belief-network structure, given a set of cases D =
{~1, ¯ .., ~m}. Each case ~.~ is the observation of one
or more variables in £ We sometimes refer to D as
a database. Table 1 is an example of a database for
the three-node domain of the Gaussian belief network
shown in Figure 1.

Our scoring metrics are based on five assumptions, the
first of which is the following:

Assumption 1 The database D is a random sample
from a multivariate normal distribution with unknown
means rfi and unknown precision matrix W.

Because every Gaussian belief network is equivalent
to a multivariate normal distribution, Assumption 1 is

Table 1: An complete database for the domain associ-
ated with the network shown in Figure 1.

Variable vMues for e~ch ca.ae
C~ae ~1, ~2 x~

I -0,78 -i,55 0. ii
2 0,18 -3.04 -2.35
3 1.87 1.04 0.48
4 -0.42 0.27 -0,68
5 L23 1,52 0.31
6 0,51 -0,22 -0.60
7 0.44 -0.18 0.13
8 0.57 -1.82 -2.76
9 0,64 0.~7 0.74

I0 1.05 0.15 0,20
Ii 0.43 2.13 0~63
12 0,16 -0,94 -1.96
13 1.64 1.25 1.03
14 -0.52 -2.!8 -2.31
15 -0,37 -I.30 -0.70
16 I.~5 0.87 0,23
17 1.44 -0.83 -1,61
1~ -0,55 -1.33 -1.67
19 0.79 -0.62 -2.00
20 0.53 -0.93 -2.92

equivalent to stating that the database D is a random
sample from a Gaussian belief network with unknown
parameters, if, B = {bid IJ < i}, r~.

A Bayesian measure of the goodness of a network
structure is its posterior probability given a database:

p(BslD,~) = c p(BsK) p(DIBs,~)

where c = 1/p(DI~) = 1/Eu~ p(Bsl~) p(DIBs,() is
a normalization constant. For even small domains,
however, there are too many network structures to sum
over in order to determine the constant. Therefore we
use p(Bsl{) p(DIBs,{) = p(D, Bs[{) as our score.

Also problematic is our use of the term Bs as an ar-
gument of a probability. In particular, Bs is a belief-
network structure, not an event. Thus, we need a def-
inition of an event B} that corresponds to structure
Bs (the superscript "e" stands for event). A natural
definition for this event is that B~ holds true iff the
database is a random sample from a minimal Gaussian
belief network with structure Bs --that is, iff for ali
j < i, bij � 0 if and only if there is an arc from xj to
~i in Bs. For example the event B} corresponding to
the Gaussian belief network of Figure l, is the event

= o, g= o, # o}.
This definition has the following desirable property.
When two belief-network structures represent the
same assertions of conditional independence, we say
that they are isomorphic. For example, in the three
variable domain {x~, x=,xa}, the network structures
x -+ x2 -~ Z3 and ~I {’- X2 ~ Z3 represent the same
assertion: xl and x3 are independent given x~. Given
the definition of B~, it can be shown that events
and B~ are equivalent if and only if the structures
Bsl and Bs2 are isomorphic. That is, the relation of
isomorphism induces an equivalence class on the set of
events B~. We call this property event equivalence.

There is a problem with the definition, however.
In particular, events corresponding to some non-
isomorphic network structures are not mutually ex-
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clusive. For example, in the four-variable domain
{xl, x2, z3, x4}, consider the structures xl =V B 4= x4
and xl =~ B =~ z4, where B is the subnetwork struc-
ture x2 --+ x3, and x =~ B means that there is an
arc from x to both variables in B. The events corre-
sponding to these structures both include the situation
where zl and x4 are marginally independent. Arbi-
trary overlaps between events can make scores difficult
to interpret and use. For example, the prediction of fu-
ture events by averaging over multiple models cannot
be justified. In our case, however, we can repair the
definition of B} so as to make non-equivalent events
mutually exclusive, without affecting our mathemati-
cal results or the intuitive understanding of events by
the user. In particular, all overlaps will be of mea-
sure zero with respect, to the events that create the
overlap. Thus, given a set of overlapping events, we
simply exclude the intersection from all but one of the
events. We note that this revised definition retains the
property of event equivalence.

Proposition 1 (Event Equivalence)
Belief-network structures Bsl and Bs~ are isomorphic
if and only if

Because the score for network structure Bs is
p(D, B} I~), an immediate consequence of the property
of event equivalence is score equivalence.

Proposition 2 (Score Equivalence) The scores of
two isomorphic belief-network structures must be equal.

Given the property of event equivalence, we techni-
cally should score each belief-network-structure equiv-
alence class, rather than each belief-network struc-
ture. Nonetheless, users find it intuitive to work with
(i.e., construct and interpret) belief networks. Conse-
quently, we continue our presentation in terms of belief
networks, keeping Proposition 2 in mind.

3.1 Complete Gaussian Belief Networks

We first derive p(D, B~s ]~), assuming Bs is the struc-
ture of a complete Gaussian belief network. A com-
plete Gaussian belief network is one with no missing
edges. Applying the property of event equivalence, we
know that the event associated with any complete be-
lief network is the same; and we use B~ to denote
this event.

To motivate the derivation, consider the following ex-
pansion of p(DIB~sc, ~):

m

P(DlB~sc ,~) = II P(C~ICt, . . ., Q-~, B}c,~) =

~=1/p(C~[rA, W,B~ ,~) p@TLWIC,,. ,C,_,,B~,~) dr5 dW

Thus, we can derive the metric if we find a conjugate
distribution for the parameters r~ and W such that
the integral above has a closed form solution.

The next assumption leads to such a conjugate distri-
bution. If all variables in a case are observed, we say
that the case is complete. If all cases in a database are
complete, we say that the database is complete.

Assumption 2 All databases are complete.~

Given this assumption, the following distribution is
conjugate for multivariate-normal sampling.

Theorem 3 (DeGroot, 1970, p. 178) Suppose
that ~1,..., ~ is a random sample from a multivari-
ate normal distribution with an unknown value of the
mean vector r~ and an unknown value of the precision
matrix W. Suppose that the prior joint distribution ofrB and W is the normal-Wishart distribution: the con-

ditional distribution of r~ given W is n(fio, uW) such
that ~ > O, and the marginal distribution of W is a
Wishart distribution with a > n- 1 degrees of freedom
and precision matrix To, denoted by w(a, To). Then
the posterior joint distribution of r~ and W given ~,
i = 1,..., l, is as follows: The conditional distribution
of ~ given W is a multivariate normal distribution
with mean vector ~ and a precision matrix (u + 1)W,
where

1 l= Y _ .Z0 + 17, (7)
u+l

i=1

and the marginal of W is w(a + l,T~), where S~ and
T~ are given by

i--1

and

= To + + - -

In this theorem, ~ and S~ are the sample mean and
sample variance of the database, respectively. Also,
an n dimensional Wishart distribution with ~ degrees
of freedom and precision matrix To is given by

p(Wl ) = (10)
=_ c(n, -1/ tr(T°W)

where tr{ToW} is the sum of the diagonal elements of
ToW and

The terms a and To are implicit functions of the user’s
background knowledge ~.

~SDLC present a survey of approximation methods for
handling missing data in the context of discrete variables.
Some of these methods in modified form can be applied to
Gaussian networks.
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From Equation 7, we see that u can be thought of
as being an equivalent sample size for rh--that is, the
equivalent number of cases the user has seen, since he
was ignorant about rh. When I new cases are seen, the
posterior mean is updated as a weighted average of the
prior mean computed based on u cases and the sample
mean based on l cases. Furthermore, if x~,..., z~ is a
random sample of n-dimensional random vectors from
a multivariate normal distribution for which the mean
vector is 0 and the n × n precision matrix is To, then
W= ~’~i=t        ~izi     has the Wishart distribution given in
Equation 10 (DeGroot, p. 56). Thus, we may interpret
a as the user’s equivalent sample size for the precision
matrix To. Note that a must be at least the number
of variables in the domain. We address the assessment
of fi0 and T0 in Section 3.4.

Summarizing our discussion so far, we make the fol-
lowing assumption:

Assumption 3 The         prior         distribu-
tion p(~, W]B}c, ~) is a normal- Wishart distribution
as given in Theorem 3.

From Equation 5, this assumption fixes the distribu-
tion p(~g,g, BIB~sc,4). Nonetheless, we shall some-
times find it easier to specify the prior density in the
space of W, rather then in the space of parameters
describing a Gaussian belief network.

It is well know that, if w, B ,4) = n(r , w)Sc
and if p(rfi, WIB~sc,~) is a normaI-Wishart distribu-
tion as specified by Theorem 3, then p(~]B}c,~), de-
fined by

is an n dimensional multivariate t distribution with
7 = a - n + 1 degrees of freedom, location vector

’    ~T,-~ (DeGroot,rio, and a precision matrix T~ = ~+~ 0
p. 180). Also, the t distribution p(ZIB}c,~) can be
written in a less traditional form, as follows (Box and
Tiao, 1973, p. 440):

where Ta is defined by Equation 9 (l = 1).

Combining these facts with Theorem 3, we know that
p(C~]C~,..., C¢-~, B~sc,~) is a multivariate t distribu-
tion with parameters u + l- 1, a + l - 1, fi~_~, and
T~_~. Consequently, we obtain

Multiplying Equation 12 by the prior probability
P(B"sc [4) yields a metric for scoring complete Gaus-
sian belief networks.

3.2 General Gaussian Belief Networks

We now consider an arbitrary Gaussian belief network
Bs. To form a prior distribution for the parameters of
Bs, we make two additional assumptions:

Assumption 4 (Parameter Independence)
For every Gaussian belief network Bs, p(g, BIB}, ~) =

I]{% ~ p(v~ , g~ IB} , 4).

We note that this assumption is consistent with As-
sumption 3, because if p(WIB}c,4) is a Wishart
distribution, then p(Y, BIB}e,~), obtained from
p(WIB~sc,4) by using Equation 5 and the Jaco-
bian OW/OYB of this transformation, is equal to

1-[i’~=~ p(vi,~lB}c,~). The derivation of this claim is
given in the Appendix (Theorem 7).

Assumption 5 (Parameter Modularity) If zi
has the same parents in two Gaussian belief networks
Bst and Bs~, then p(v,, <IB)~, 4) = p(v,, b]lB}~, 4).

Assumption 4 has been made in discrete contexts
by many researchers (e.g., CH, Buntine, SDLC, and
HGC). Assumption 5 has also been made by these
same researchers, but HGC were the first researchers
~o make the assumption explicit and to emphasize its
importance for generating prior distributions. Param-
eter modularity plays a similar important role in the
current development. In particular, this assumption,
in conjunction with the property of event equivalence
and our previous assumptions allows us to determine
the joint prior distribution of the parameters rfi, ~7, B
associated with any Gaussian network Bs from the
joint density p(rfi,

To see this fact, first note that, by the definition of the
event B~s, p(rfiig, B,B},~) = p(rfiig, B,B}c,~). The
latter distribution is determined by p(rfiiW, B" ,4),
which is given. Second, from Assumption 4, we ob-
tain p(g, BIB},4) by determining p(vl,b, iB},4) for
e~ch i. By Assumption 5, however,

is equal to p(vi,bilB~sb,~) for any complete networkstructure Bs,c where the parents of xi are the same as

are those in Bs. By event equivalence and Assump-
tion 4, we obtain p(vi, ’~"b, IBsb, 4) from the given density

From Assumptions 1 through 5, we derive p(DIB~, ~).
To do so, we need the following theorem whose proof
is provided in the Appendix.

Theorem 4 /f p(~lrfi, W, D, ~) is a multivariate nor-
mal distribution, and p(rfilW, D,B},~) is a multi-
variate normal distribution with a precision matrix
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vW, v > O, then p(zilx~ .... ,xi_~,ff, B,D,B~,~)
p(xl [gi, vi, ~, Dz~n~, B~,, ~), wh~re Bs, is any network
where ~i has the same parents as in Bs, and D~n~

the database D restricted to the variables in {~}
In particular, this claim holds for any complet~ Gabs-
sian belief network Bsc = Bs, in which H~ and
appear before any other variables, and Hi appears

Let Dt = {C1,...,Ci_J-} and Ct be an instance of
xl, ¯ ¯., x,> In the following derivation, we use xi and
Hi to represent the instance of zi and IIi in the /th
case. Theorem 4 yields,

and

By combining these equations, we obtain the following
likelihood separability property:

~ fl P(D*’mIv~’~’B~’~)P(DIg’B’Bs’~) = p(Dm~vi,~,B},~) (13)

By hayes rule, p(g, BID, B},~) is proportional
to p(DIU, B,B},~)p(g, BIB},~). Thus, because
p(DIg, B, B~s, ~) factors as shown by Equation 13, and
p(g, BIB~s,g) factors as given by Assumption 4, we
obtain the following posterior parameter independence
property:

In a similar manner, whenever xi has the same par-
ents in two Gaussian belief networks Bs and Bs,, by
using Equation 13 where B} in the right hand side is
replaced by B}, and using Assumption 5, we obtain
the posterior parameter modularity property:

p(vi, gi[D,’m, B~, ~) -~ ,o(vi, ~ ID"’m, B~s,, ~)

Now, we have

(14)

p(Q IDa, B~, ~) = fl p(~:~ Ix J-,..., z,-_~, Dr, B~s, ~)

p(~ k J-,..., ~-j-, D~, B~s , ~)

= f~o(~l~t,...,xi_~,D~,<B,B~s,~)

-d< ~ I ~, ~, ~)] d~B (15)

By applying Theorem 4 to the first term of the right-
hand-side of Equation 15, and posterior parameter in-
dependence and posterior parameter modularity to the
second term, we obtain

Therefore,

r~=~n~ ~ ~ is a multi-Furthermore, because p(IIi ~ , ~sc, v]
variate t distribution, we know that

p(IIi ~’t    , ~Sc, sl =

(DeGroot, p. 60}. Thus, combining Equations 14 and
16, we have

(17)

where each term in 17 is of the form given in Equa-
B~tion 12. Multiplying Equation 17 by p(slY), we ob-

tain a metric for an arbitrary Gaussian belief net-
work Bs. We call this metric BGe which stands for
Bayesian metric for Gaussian networks having score
equivalence.

3.3 Score Equivalence

In making the assumptions of parameter indepen-
dence and parameter modularity, we have--in effect--
specified the prior densities for the multinomial param-
eters in terms of the structure of a belief network. Con-
sequently, there is the possibility that this specification
violates the property of score equivalence. The follow-
ing theorem, however, demonstrates that our specifi-
cation implies score equivalence.

Theorem 5 (Score Equivalence)
If BSl and Bs2 are isomorphic belief-network struc-
tures, then p(DlB~s~,~) and p(DIB2>~) as computed
by Equation 17 are equal.

Proof." In Heckerman ee al. (1994, Theorem 10), we
show that a belief network structure can be trans-
formed into an isomorphic structure by a series of arc
reversals, such that, whenever an arc from zi to xj is
reversed, Hi = Hj \ {xl}. Thus, our claim follows if we
can prove it for the case where Bst and Bsg_ differ by
a single arc reversal with this restriction.

So, let Bs~ and Bs~ be two isomorphic network struc-
tures that differ only in the direction of the arc between
xi and zj (say xi --~ x~ in Bsl). Let R be the parents
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of x~ in Bsl. By the cited theorem, RU {z~} is the
parents of zj in BsI, I~ is the parents of xj in Bs2,
and RU {zj} is the parents of ~ in Bs~. Because the
two structures differ only in the reversal of a single arc,
the only terms in the product of Equation 17 that can
differ ~re those involving x~ and x~. For Bs~, these
terms are

p(D IBs~,~) p(D IBs~,~)            ,~)

whereas for Bs2, they are

R(D~JR[

Thus, p(D[B~,~) =

_ P[ I so,C)

3.4 Encoding Prior Knowledge: The Prior
Gaussian Belief Network

From the previous discussion, we see that there are
three components of a user’s prior knowledge that are
relevant to learning Gaussian networks: (t) the prior
probabilities p(B~s [~), (2) the equivalent sample sizes a
and v, and (3) the parameters fi0 and To. The assess-
ment of the prior probabilities p(B~sl~) is straightfor-
ward. Buntine and HGC, for example, describe meth-
ods that facilitate these assessments. In addition, a
user can assess the equivalent sample sizes directly. In
this section, we concentrate on the assessment of ~0
and To.

Whereas using a Gaussian belief network for assessing
a multivariate normal distribution is valid, recalI that,
in our approach, the user actually specifies a family of
multivariate normal distributions indexed by r~ and
W, rather than a single normal distribution. More-
over, we have seen that if p(~, WIB~sc, ~) is a normal-
Wishart distribution, then p(~lB~c,~) is actually a
multivariate t distribution given by Equation 11 with
parameters ~, a,fi0, and To. Thus, the direct assess-
ment of fi0 and To are difficult. Nonetheless, we can
use a heuristic method that is based on the following
equations for fi0 and To known to hold for t distribu-
tions:

E(~I~) = rio           (18)
and

+ 1)
0’-2T~ - v(~-n-1)T° (19)

where E(~lg) and are the expectation and
covariance of ~, respectively (e.g, DeGroot, pp. 60-
61). Therefore, to assess /~0 and To, we first ask
the user to build a prior Caussian belief network for
~ = {xi,...,x=}. Then, we use Equation 5 to gener-
ate a covariance matrix cov(~]{). Finally, we use the
means and covariance matrix from this prior Gaussian
belief network to determine fi0 and To.

Although this procedure is heuristic in the sense that
cov(~]{) is assessed as if it came from a normal distri-
bution rather then from a multivariate t distribution,

normal and t distributions are similar in that both
have a single maximum and symmetric tails around
their maximum.3 Therefore, the users’ assessments--
which are not precise anyway--are being reasonably
interpreted.

3.5 Simple Example

Suppose the user’s prior-network structure is that
shown in Figure 1 and has paramet~s
(0.1,-0.3, 0.2), ~" = (1, 1, 1), b~’~ = (0), and b~ = (I, 1).
Also, suppose the user’s equivalent sample sizes u and
a are both equal to 6. Let us apply the BGe metric
having observed the database shown in Table 1.

First, we use the parameters of the prior network in
conjunction with Equation 6 to compute E = cov(~[[).
Next, we apply Equation 19 with v = a = 6 and n = 3
to compute To. We obtain

1.7 0 1.7 )
To = 0 1.7 1.7

1.7 1.7 5.1

Then, we compute the sample mean and sample vari-
ance of the database (l = 20) according to Equations 7
and 8, and use Equation 9 to compute T~o, yielding

T~o = 35.8 27.7
. 27.7 41.2

Finally, using Equation 12 with c(n = 3, a = 6) =
0.029 and c(n = 3, a + m = 26) = 2.6 × 1013, we obtain

B~ , 10-ss.the density p(D[ .% ~) = 1.5 x To compute
the density for an incomplete network structure--say
xl --~ z.~ -~ x3--we use Equation 17:

where we compute each term in the previous equation
by eliminating the appropriate rows and columns of To
and T~0 and again using Equation 12.

There are eleven distinct (i.e., nonisomorphic) belief-
network structures for {z~, z~, z3}. Therefore, ~sum-
ing that these structures are equally likely, we obtain
the BGe score for each structure B.~ by multiplying the
density p(D]B}, ~) by 1/11. After renormalization, we
find that the network structure Zl -~ z~ -q z3 has the
highest posterior probability: 0.60. Not surprising,
the database in Table 1 was generated from this net-
work structure (with parameters fi0 = (0.5, 0.2,-0.5),
g= (1,1, 1), b~ = (1), and b~ = (0, 1)).

3Also, as the number of degrees of freedom becomes
arbitrarily large, the multivariate t distribution converges
to the multivariate normal distribution (DeGroot, p. 255).
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4 Metrics for Gaussian Causal
Networks

People often have knowledge about the causal relation-
ships among variables in addition to knowledge about
conditional independence. Such causal knowledge is
stronger than is conditional-independence knowledge,
because it allows us to derive beliefs about a domain
after we intervene. Causal networks, described--for
example--by Spirtes et al. (t993), Pearl and Verma
(1991), and Heckerman and Shachter (1994) represent
such causal relationships among variables. In partic-
ular, a causal network for U is a belief network for
U, wherein it is asserted that each nonroot node x is
caused by its parents. The precise meaning of cause
and effect is not important for our discussion. The in-
terested reader should consult the previous references.

The event C} is the same as that for a belief-network
structure, except that we also include in the event the
assertion that each nonroot node is caused by its par-
ents. Thus, in contrast to the case for belief networks,
it is not appropriate to require the properties of event
equivalence or score equivalence. For example, con-
sider a domain containing two variables x and y. Both
the causal network Csl where x points to y and the
causal network C52 where y points to x represent the
assertion that x and y are dependent. The network
Cst, however, in addition represents the assertion that
x causes y, whereas the network Cs2 represents the as-
sertion that y causes x. Thus, the events C~I are C~2
are not equal. Indeed, it is reasonable to assume that
these events--and the events associated with any two
different causal-network structures--are mutually ex-
clusive.

In principle, then, a user may assign a (possibly dif-
ferent) prior distribution to the parameters r5, ~7, and
B to every complete Gaussian causal network, con-
strained only by the assumption of parameter mod-
ularity. The prior disl, ributions for parameters of in-
complete networks would then be determined by pa-
rameter modularity. We call this general metric BG,
as it is a superset of the BGe metric. For practical rea-
sons, however, the assessment process should be con-
strained. One alternative is to use the BGe metric. A
more general alternative is to continue to use the prior
network to compute fi0 and To, but to allow equivalent
sample size to vary for different variables and different
parent sets of each variable. We call this metric the
BGp metric, where "p" stands for prior network.

5 Summary and Future Work

We have described metrics for learning belief networks
and causal networks from a combination of user knowl-
edge and statistical data for domains containing only
continuous variables. An important contribution has
been our elucidation of the property of event equiv-
alence and the assumption of parameter modularity.

We have shown that these properties, when combined,
allow a statistician to compute a reasonable prior dis-
tribution for the parameters of any Gaussian belief
network, given a single prior Gaussian belief network
provided by a user.

A legitimate concern with our approach is that the
multivariate model is too restrictive. In practice, when
this model is inappropriate, statisticians will typically
turn to a more general model where each continuous
variable conditioned on its parents is assumed to be
a mixture of multivariate normal distributions. In
Geiger and Heckerman (1994), we derive metrics for
domains containing both discrete and continuous vari-
ables, subject to the restriction that a domain can be
decomposed into disjoint sets of continuous variables
where each such set is conditioned by a set of dis-
crete variables. We note that this work, when com-
bined with approximation methods that handle miss-
ing data, provides a method for learning with multi-
variate mixtures.

In the discrete case, a complete network has one pa-
rameter for each instance of a3. Consequently, it is easy
to overfit such a structure with data; and the met-
rics developed for discrete domains provide a means
by which we can avoid such overfitting. In the contin-
uous case, a complete network has only n+ n(n- 1)/2
parameters. Thus, it is possible that the errors intro-
duced by our methods, arising from heuristic search in
an exponential space to find one or a handful of struc-
tures with high scores outweigh the benefits associated
with decreasing the degree of overfitting. We leave this
concern for future experimentation.
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Appendix

Theorem 6 The Jacobian J for the change of vari-
ables from W to {g, B} is given by

J = OW/OgB = H v~(i+l) (20)
i----1

Proof: Let
variables in
form:

J(i) denote the Jacobian for the first i
W. Then J(i) has the following matrix

where Ik,k is
the absolute value of J(i) is given by,

(21)

the identity matrix of size k × k. Thus,

1
IJ(i)l = vi+li " IJ(i -- ])1       (22)

which gives Equation 20. []

Theorem 7 If p(Wl~) has an n-dimensional Wishart
distribution, then

i:1

Proof’. By assumption, we have

p(W[~) = c ]W](C~-n-1)[2e-1/2trlT°W} (23)

Thus, we must express Equation 23 in terms of {~,
multiply by the Jacobian given by Theorem 6, and
show that the resulting function factors as a function
of i. From Equation 5, we get

[W(i)[ = 1--!W(i- 1)l-- IIv~-~
73i                   i=!

so that the determinant in Equation 23 factors as a
function of i. Also, Equation 5 implies (by induction)
that each element wlj in W is a sum of terms each be-
ing a function of ~ and vi. Consequently, the exponent
in Equation 23 factors as a function of i. ~

Theorem 4 If p(~lr~,W,D, UL~) is a multivari-
ate normal distribution, and p(r~]W,D,B},~) is a
multivariate normal distribution with precision matrix
uW, u > O, then p(x~lx~,...,Xi_l,g,B,D,B~,~) =
p(xil[Ii, vi, ~ii, Dz~n’, B},,~) where Bs, is any network
where xi has the same parents as in Bs, and D~ is
the database D restricted to the variables in {xi} O Hi.

Proof: Using

and Assumptions 1 and 3, we obtain

where riD is the posterior mean after seeing D, given
by Equation 7 of Theorem 3.

The marginal distribution p(x~,...,xi[~) of a nor-
real distribution n0fi, W) is a normal distribution
n(r~i, Wi), where rfii and Wi are the terms in r~
and W that correspond to x~,...,xi.Thus, using
I Wl = Hin~l V~- 1, Equation 24 becomes

p(xl,..., xi lW, D, B~, ~) (25)

= c IW l
By expressing W in terms of ~’ and B using Equation 5,
we obtain

P(Z~ , . . . , zilg, B, D, B},()      -~/2 . e-½ u.b~ A
p(Xl,..., D, = c.

where

A tr (~ fiD)i(~ " ’ ’~’ (27)
vl

where (~’-fiD)i is the column vector of the i elements
of (Z-riD) that correspond to xl,...,xi. Starting
with any network Bs,, such that the parents of xl are
the same as in Bs, we obtain exactly Equations 26 and
27. Furthermore, because tip depends only on D~JI~,

the theorem is established. E3


