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We derive the expression for scoring Gaussian directed acyclic
graphical models and discuss how to evaluate the score efficiently.

A. Deriving the score. We first proceed through the steps needed
to derive the Bayesian Gaussian equivalent (BGe) score as introduced in
Geiger and Heckerman (1994); Heckerman and Geiger (1995); Geiger and
Heckerman (2002). We use the same notation as Geiger and Heckerman
(2002) and let n be the dimension of the variables X, with N the number
of observations of x in a dataset d = {x1,...xx}. For a Gaussian directed
acyclic graph (DAG) model, we wish to evaluate the terms in the product

fr p(dPRUE | m)

hy _
(A.1) p(d|m") = z:l_Il p(dPai | mg)

where Pa; are the parent variables of the vertex i and d¥ is the data re-
stricted to the coordinates in Y C X. In the following we leave out the
explicit dependence on the model hypothesis m” and the complete data
model m! in the formulae.

A.1. Definitions. The data is assumed to be normally distributed with
mean p and precision matrix W

pld|p, W) =

(A.2) — - o3[, (i) (=))W ]
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where we reordered the exponent using the cyclicity of the trace The prior
on W is taken to be a Wishart distribution, W ~ W, (T~ ! ), where
.y > n—1is the degrees of freedom and 7' is the positive definite parametric
matrix. We follow the standard practice, as in Press (1982), of using the
scale matrix (the inverse of the parametric matrix) in the argument of the
distribution, which has the following form

ayw—n—1 n 1
WIm =" —inpaw
A3 W)= —0—F—— r[TW]
( ) p( ) ZW(?’L, T7 Oéw) ’
with normalising constant

272 I, (%
(A4) Z(n, T, ) = 2o (8
involving the multivariate gamma function

(A.5) r, (%w) (1] (%H—y)

Next assume a normal prior on g with mean v and precision matrix a, W,
with ay, > 0,

1 1 T
W) = — o sv)aW(p-v)
p(p|W) ZN(n,W’,aH)e 2 H
1 1 T
A. -t i) () e W]
4o ZN(n,W%)e ’ '

again using the cyclicity of the trace and where the normalising constant is

(2m)%

A7 Inn,W,a,) = ———
A i W) =

Jointly p, W therefore follow a normal-Wishart prior distribution

aw n

W CL(pp)T oy 1
A8 W)= "1 = m3ev) auW(p—v) =5 Tr[TW]
( ) p(U7 ) Z(TL,OZH,T,Oéw)e 2 e 2
with
(cw+)n n

P (2w

(A.9) Z(n, 0, T, ) = —— a_w( 3)
()2 [T
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A.2. The posterior distribution. The first step is to calculate the poste-
rior probability p(u, Wd) = p(d, u, W)/P(d) of the parameters p, W given
the data d. Start by writing the joint probability in the form p(d, u, W) =
p(d|p, W)p(pe, W) and taking the log

Inp(d,p, W) =---
N
—%Tr (Z(u—xi)(u—xi)T—kau(u—V)(u—V)T—i-T) W]
i=1
(A.10)
Define
1 N
(A.11) X = Nzxi’ SNZZ(Xi—i) (x; —%)"
i=1 i=1

so that Sy is the sample variance multiplied by (N — 1). By expanding and
comparing terms, one has

N
(A.12) (B—xi)(p—xi) =Sy +N(p—%) (p—x)"
i=1
and also
(A13)  N(p-x)(p—-%)" +o.(p—v)(p—v)"
N
= W) (=) ()" 4 s ) )
with
Nx + a,v
( ) g (N +ay)
Further define
_ Na, = T
(A.15) R_T+SN+(N+a“) (x—v)(x—v)
then we may rewrite the joint probability from (A.10) as
1 / nT
(A.16) Inp(d.p, W) =---~ JTr (R4 (N +ap) (=) (p—v)") W]
or explicitly
(A.17)
N+4aw—n
p(d W) = — V1 o= 3 (=) (N )W (1) g~ L TH{RIV]

(2m)" Z(n, ap, T, )
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In order to obtain the marginal P(d) the above expression needs to be
integrated with respect to p, W. Comparing to (A.8) we can see that the
functional form inside the integral corresponds to that of a normal-Wishart
distribution with the following transformations

a, — N+ay,
oy — N+ay
N /

v v

(A.18) T — R

Therefore its integral is given by the normalization constant, leading to
(A.19)

p(d)_Z(n,N—i-awR,N-l-aw)_( a )% rn(%) T

(27)° Z(n, 0, T, ) N+au) =T, (%) R

This formula agrees with both equation (24) of Heckerman and Geiger (1995)
and equation (18) of Geiger and Heckerman (2002) in the case when the full
data is considered rather than a node specific subset.

From the above it also follows that the posterior distribution of the pa-
rameters p, W remains normal-Wishart
(A.20)

’W’NMQLU% L p—"YT(N+a, )W (u—r') ,— L Tr[RW]

p(u’W|d)_Z(n,N—FaM,R,N—Faw)e ’ ' ¢’

with parameters as in (A.18).

A.3. Subsets. Finally we need to perform the same steps but when we
restrict to a subset Y of size [ of the n coordinates of the data, Y C X.
These subsets are the data corresponding to either the node being scored
and its parents, or its parents alone, and the resulting terms are needed for
the complete evaluation of the BGe score involving the marginal likelihood
in (A.1). We form a mean vector gy from the components of p that are in
Y and similarly partition the matrix W. Denoting the complement of Y by
Y. and with the elements appropriately reordered

My W YY 7! % T
(A21) l‘l’ = < ) s H/ = < YY ) s |/|/ S, — |/|/ =
My M/Y MIY - YY YY

Since the data d is assumed to be normally distributed with mean g and
precision matrix W, the subset of the data on the Y coordinates is then
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normally distributed with mean p+ and precision matrix Wy where
-1 -1
) =Wyy = Wyy Wyy) Wy

Since for a multivariate normal we just need to keep the corresponding
elements of the covariance matrix, we simply invert W, select the elements
and then invert again as in (A.22).

Next we need the distribution of p+, given that p is normally distributed

(A.22) Wy = ((W—I)YY

ZY ) and precision matrix «,W. Again transforming
Y

to the covariance matrix, selecting elements and transforming back leads to

a normal distribution with mean vy and precision matrix o, Wy. All we

really need then is the distribution of Wy given that W follows a Wishart

distribution with parametric matrix 7" and degrees of freedom ay,. For this

we use Theorem 5.1.4 of Press (1982)

o If W ~ W, (T7!, ) is Wishart distributed, then

with mean v = <

(A23) WY ~ Wl ((Tyy)_l , Oy — N+ l)
where the degrees of freedom has been reduced and we simply select
the relevant entries from the parametric matrix.

This result is also included in Theorem 5 of Geiger and Heckerman (2002).
The prior distribution for the subset of the parameters is then

’VVY‘Q% n
WA =
g, W) Z(l aps Tyy, oy —n+ 1)
(A.24) o sy =) Wy (by —vy) o~ s T[Ty y Wy]

while the likelihood for the corresponding subset of data d¥ from (A.2) is

N
p(d¥ |y, Wy) = |(W‘;'z§ o~ BT (L, = ) (v =)™ Wy
2m)2
N
(A.25) = Me_%Tr[((SN)YYJ"N(p‘Y_iY)(P’Y_’ZY)T)WY]
en T

reorganised using (A.12). We may follow the same steps as in section A.2 to
obtain the joint probability

N4aw—n

Wy | 2
(27)2 Z(1, 4, Ty y s 0ty — 1+ 1)

(A26) .e_% (H’Y_V/\()T(N'FQH)WY (MY_VI\()G_%TI'[RYYWY]

p(dYa Ky, WY) =
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where handily we may simply select the corresponding elements of the pos-
terior parametric matrix R in (A.15).

Finally we marginalise by integrating out (u~, Wy')
Z(I,N 4+ ayu, Ryy,N +ay, —n+1)

(2m)2 Z(1, ap, Ty, 0y — 1+ 1)

1 N+aw—n+l Q— n !
(A.27) - a\* Fl( N ) [TPyy |7
N + oy W%Fl (70“” n+l) ‘Ryyf N+aw —

p(dY) =

This result differs from equation (18) of Geiger and Heckerman (2002) in how
the matrix elements are selected and differs from equation (24) of Heckerman
and Geiger (1995) in how the o, parameter changes when looking at subsets.
Both differences probably derive from how the arguments of the Wishart
distribution in (A.23) are updated for subsets following from Theorem 5.1.4
of Press (1982) itemized above.

B. Simplifying the score. As can be seen in (A.1), the score for each
node ¢ involves finding the probability of the data restricted to the node’s
parents compared to the data restricted to the parents and the node itself.
Let P denote the parent set of size p and Q the parent set plus the node, of
size p+ 1. Since the difference in size is exactly 1, the ratio of scores involves
similar matrix elements and prefactors which can be simplified. Starting
with the prefactors:

(B.1)

p(d?) _
p(dP) N —|— a,
since the ratios of multivariate gamma functions each leave a single term.

The term in front of the ratios of determinants need only be calculated once
for each value of p =0,...,n — 1 and stored for computational efficiency.

Qw — n+P+1 N+aw n+p
| Bpp|

Ntaw— n+p+1

N|=

Tqq]
_ oy — n+
2T (aw n+p+1) ‘TPP‘ p‘RQQ’

(N—l—aw n+p+1 )
N
2

B.1. Simplifying ratios of determinants. The more expensive step is cal-
culating the determinants. For the ratio however one can first partition the
larger matrices

bT
(B.Q) Rqq = < f) D ) , D = Rpp

so that

(B.3) [Rqq| = a|D —ba™'bT| = D] (a — bTD'b)
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and hence
Ntaw—ntptl N+ayw—ntp+1l
B.4 Faal” =~ _\pi(, prpoip ?
’R ’N‘Faw n+p
PP 2

Due to the difference in powers, |D| still needs to be calculated. Typically,
determinants are determined via an LU decomposition, which for the sym-
metric matrices considered here reduces to the Cholesky decomposition. For
a p x p matrix, this takes %3 operations. Although the inverse can be found
from the Cholesky decomposition (Krishnamoorthy and Menon, 2011) this
is more expensive than taking a second p X p determinant in the first expres-
sion in (B.3). Only for small p would this in turn be notably more efficient
than simply calculating |Rqq|. In principle one could resort to Coppersmith
and Winograd (1990) or faster (Williams, 2012) algorithms for matrix mul-
tiplication and inversion to obtain D~! with no overhead on calculating its
determinant asymptotically. Here, luckily we can avoid such complications
since from the Cholesky decomposition

(B.5) D=LL", b'D b =c'c, c=L""'b

we know L and can solve Lc = b for ¢ using back-substitution with p?
operations. Using the block partitioning therefore speeds up the calculation
of (B.4) by approximately a factor of two.

Using the block partitioning also means we completely avoid matrices
when p = 1. When p = 2 it is much faster to use the explicit form for the
determinant and inverse of a 2 x 2 matrix rather than decompose and back-
solve. For p = 3 the Laplace expansion may provide the determinant more
than twice as quickly as decomposition. In this case there should be a slight
additional speed up from using the first expression in (B.3).

These simplifications provide further advantages above the general factor
of two from the block partitioning, particularly for the sparse DAGs consid-
ered in Friedman and Koller (2003) and Grzegorczyk and Husmeier (2008).
Since the scoring is likely to be the most expensive part of general MCMC
schemes on DAGs (like the structure MCMC of Madigan and York, 1995)
the efficiency gained here allows longer chains to be run.

B.2. Diagonal prior parametric matriz. A suggested choice for the prior
parametric matrix T, if a,, > n + 1, is to approximate the multivariate
t-distribution of x by a normal (Geiger and Heckerman, 2002). Assuming
independent normals, leads to

ay(ay —n—1)
(O‘u +1)

(B.6) T=tl,, t=



8 J. KUIPERS, G. MOFFA AND D. HECKERMAN

being diagonal (the scaling is to match the covariance of both distributions).
Of course, if T" is diagonal, then calculating determinants of its subblocks is
straightforward. When the elements are equal as here then
aw—n+p+1

T - 2 oy —n—+2p+1
(B.7) % e

Tpp| ™
so that this term takes little computational time. Such a choice for T" there-
fore reduces the computation of the score by an additional factor of two.

B.3. Bias in the score of Heckerman and Geiger (1995). Finally we com-
pare the terms in (B.1) here to those obtained from the marginal likelihoods
in Heckerman and Geiger (1995) since that version is likely to have been
used in earlier papers employing the BGe score. After simplifying the corre-
sponding ratio of multivariate gamma functions, one obtains

1 N+aw— aw aw
s Y —( - ) P (*442) [Tqq|* |Rep|
) P - ﬂ Oy — Qw Ntaw
p(d®)  \N+ou) 737 (242) |Tpp| ¥ |Rqql™ 2

Aside from the difference in the powers of the determinants, the remaining
ratio of gamma functions decreases with p unlike the ratio in (B.1). To
compare the difference in the prefactor better, we consider their ratio

T (N+aw;n+p+1) T (%)
T (aw—g-i-p—i-l) ' T (N—i—t)éw—P)

(B.9) g(p) =

For simplicity, assume that n is odd so that g =1 for p = ”T_l Around this

central value
r (2N+2a4w—n+1 X %) T (w _ ) ) n—1

(B-10) 9(p) = T (2N+2aiu—n+l _ %) T (2awzn+1 N ) PP

NS

[\SliSH

Using the recurrence relation for gamma functions

2N+2ay —n+1425 _ 1) ... (2N+20w—nt1425 _ =
- 1 T p
(B.11) 9(p) = 20 —n+1+2p 20— 5 -
20w —ntl+2p 1) . (20w—ndl+2p
1 1 p
we have a simple product of p terms for p=1,..., "TH, and the inverse for

negative p. The exact behaviour of g obviously depends on the dimension n,
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the parameter «,, and the number of observations IV, but if we assume the
latter to be significantly larger than the others (N > n, ay,) then

~ n—1

(B.12) g(p) ~ NP, g(p)~ NP2

with the same behaviour for even n.

Practically this means that the score of Heckerman and Geiger (1995)
penalises each node in a DAG with p parents by roughly N? compared
to the score in (B.1). Sparse DAGs with few parents are then artificially
favoured. Even without assuming N to be much larger than n and «,,, the
ratio g(p) still increases with p and a bias remains towards sparse DAGs.
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