
Ordering-Based Search: A Simple and Effective Algorithm for
Learning Bayesian Networks

Marc Teyssier

Computer Science Dept.
Stanford University
Stanford, CA 94305

Daphne Koller

Computer Science Dept.
Stanford University
Stanford, CA 94305

Abstract

One of the basic tasks for Bayesian networks

(BNs) is that of learning a network structure

from data. The BN-learning problem is NP-

hard, so the standard solution is heuristic search.

Many approaches have been proposed for this

task, but only a very small number outperform

the baseline of greedy hill-climbing with tabu

lists; moreover, many of the proposed algorithms

are quite complex and hard to implement. In

this paper, we propose a very simple and easy-to-

implement method for addressing this task. Our

approach is based on the well-known fact that

the best network (of bounded in-degree) consis-

tent with a given node ordering can be found very

efficiently. We therefore propose a search not

over the space of structures, but over the space

of orderings, selecting for each ordering the best

network consistent with it. This search space is

much smaller, makes more global search steps,

has a lower branching factor, and avoids costly

acyclicity checks. We present results for this al-

gorithm on both synthetic and real data sets,

evaluating both the score of the network found

and in the running time. We show that ordering-

based search outperforms the standard baseline,

and is competitive with recent algorithms that

are much harder to implement.

1 Introduction

Much work has been done on the problem on learn-
ing the structure of a Bayesian network (BN) [Pearl,
1988] from a data set D. The task can be for-
mulated as that of finding a network structure that
maximizes some scoring function defined relative to
D. Although several definitions of score have been
proposed, the most commonly used is the Bayesian
score [Cooper and Herskovits, 1992], and specifically
its BDe variant [Heckerman et al., 1995]. Unfortu-

nately, the task of finding a network structure that op-
timizes the score is a combinatorial optimization prob-
lem, and is known to be NP-hard [Chickering, 1996a;
Chickering et al., 2003], even if we restrict each node
to having at most two parents.

The standard methodology for addressing this
problem is to perform heuristic search over some
space. Many algorithms have been proposed along
these lines, varying both on the formulation of the
search space, and on the algorithm used to search
the space. However, it has proven surprisingly hard
to beat the simple yet highly effective baseline, of
greedy hill-climbing search over the space of net-
work structures, modified with a tabu list and ran-
dom restarts. Recently, several more powerful algo-
rithms have been proposed (e.g., [Chickering, 1996b;
Chickering, 2002; Steck, 2000; Elidan et al., 2002;
Moore and Wong, 2003]). Although some of these ap-
proaches have been shown to provide improvements
over the baseline, they tend to be fairly complex and
hard to implement.

In this paper, we define a simple yet effective al-
gorithm for finding a high-scoring network structure.
Our approach is based on the fundamental observa-
tion [Buntine, 1991; Cooper and Herskovits, 1992]

that, given an ordering ≺ on the variables in the net-
work, finding the highest-scoring network consistent
with ≺ is not NP-hard. Indeed, if we bound the in-
degree of a node to k, this task can be accomplished in
time O(nk) (where n is the number of variables). By
itself, this observation is of limited use, as determin-
ing an appropriate ordering is itself a difficult problem,
usually requiring significant domain knowledge.

However, this observation leads to the obvious idea
of conducting our search over the space of orderings ≺,
rather than specific network structures. We define the
score of an ordering as the score of the best network
consistent with it. We define a set of local search op-
erators — flipping a pair of adjacent nodes in the or-
dering — that traverse the space of orderings, and use
greedy hill-climbing search, with a tabu list and ran-

dom restarts, to find an ordering that maximizes the
score. The idea of using orderings to provide a more
global view on structures was also used by Larranaga
et al. [1996], who proposed an approach similar to ours,
but using a genetic algorithm search over structures.
Their algorithm is quite complex, and its advantages
in practice are unclear. In a different setting, Fried-
man and Koller [2003] used MCMC over the space of
orderings for Bayesian model averaging for structure
discovery.

The ordering search space turns out to have some
useful properties. First, it is significantly smaller than
the space of network structures: 2Ω(n2) network struc-
tures versus 2O(n log n) orderings. Second, each step in
the search makes a more global modification to the cur-
rent hypothesis, thereby better avoiding local minima.
Third, the branching factor in our search space is O(n)
rather than O(n2), reducing the cost of evaluating can-
didate successors in each step. Finally, as acyclicity is
not an issue given an ordering, we avoid the need to
perform acyclicity checks on candidate successors, a
potentially costly operation for large networks.

The main disadvantage of ordering-based search is
the need to compute, in advance, a large set of suf-
ficient statistics: for each variable and each possible
parent set. This cost can be particularly high if the
number of data instances is large. We reduce this cost
by using both the AD-tree data structure of Moore
and Lee [1997], and by pruning the space of possible
parents for each node using the method of Friedman
et al. [1999]. We note that, when the data set is very
large, we can also reduce the computational burden by
learning from a randomly-sampled subset.

We experimented with ordering-based search, com-
paring it to the standard baseline of greedy-tabu
search over structures. We used both synthetic data,
generated from a known network, and real data in the
domain of gene expression. We show that, for do-
mains with a large number of variables, our method is
less likely to get trapped in local minima, and there-
fore often finds significantly higher-scoring structures.
Moreover, it generally finds its final solution much
faster than structure-based search (including the re-
quired pre-processing time). We also performed a par-
tial comparison to the (extensive) experimental re-
sults of Moore and Wong [2003], showing that our
simpler method finds networks of comparable quality,
and often using less computation. Overall, our results
suggest that this very simple and somewhat obvious
method is a surprisingly effective approach for model
selection in Bayesian network learning.

2 BN Structure Learning

Consider the problem of analyzing the distribution
over some set X of random variables X1, . . . , Xn, each
of which takes values in some domain Val(Xi). For
simplicity, we focus on the case where the variables
are discrete-valued, but our approach extends easily
to the continuous case. Our input is a fully observed
data set D = {x[1], . . . , x[M]}, where each x[m] is
a complete assignment to the variables X1, . . . , Xn in
Val(X1, . . . , Xn). Our goal is to find a network struc-
ture G that is a good predictor for the data.

The most common approach to this task is to de-
fine it as an optimization problem. We define a scoring

function score(G : D), which evaluates different net-
works relative to the data D. We then need to solve
the combinatorial optimization problem of finding the
network that achieves the highest score. For the re-
mainder of this discussion, we take the training set D
to be fixed, and omit mentioning it explicitly.

Several scoring functions have been proposed; most
common are the BIC/MDL score [Schwarz, 1978] and
the BDe score [Heckerman et al., 1995]. The details
of these scores are not relevant for our discussion. For
our purpose, we assume only two properties, shared
by these scores and all others in common use. First,
that the score is decomposable, i.e., that it is the sum
of scores associated with individual families (where a
family is a node and its parents):

score(G) =

n
∑

i=1

score(Xi, PaG(Xi)).

The second property is the reduction of the score to
sufficient statistics associated with individual fami-
lies. In the discrete case, these statistics are simply
frequency counts of instantiations within each family:
M [xi, u] for each xi ∈ Val(Xi), u ∈ Val(PaG(Xi)).

Given a scoring function, our task is finding

argmaxGscore(G) (1)

This task is a hard combinatorial problem. Several
of its specific instantiations have been shown to be
NP-hard, even when the maximum number of parents
per node is at most two [Chickering, 1996a; Chickering
et al., 2003]. The key intuition behind this result is
that, due to the global acyclicity constraint, the choice
of parent set for one node imposes constraints on the
possible parent sets for other nodes.

One method for circumventing this problem is
to postulate a pre-determined ordering ≺ over
X1, . . . , Xn, and restrict the graph G to be consistent
with that ordering: If Xi ∈ PaG(Xj), then Xi ≺ Xj .
This constraint ensures that all such consistent struc-
tures are acyclic, rendering the choice of parent set

for different nodes independent. This observation was
used by most of the early algorithms for BN struc-
ture learning, which searched for a network consis-
tent with a pre-determined ordering (e.g., [Cooper and
Herskovits, 1992]). Unfortunately, coming up with a
good ordering requires a significant amount of domain
knowledge, which is not commonly available in many
practical applications. Therefore, most recent algo-
rithms for BN structure learning do not make this as-
sumption, and search over the general space of network
structures.

The most common solution for finding a high-
scoring network is some variant of local search over the
space of networks using the operators of edge addition,
deletion, and reversal. The decomposability property
and the use of sufficient statistics allow these operators
to be evaluated very efficiently. Most typically, the
algorithm performs greedy hill-climbing search, with
occasional random restarts to address the problem of
local maxima. An important improvement that also
avoids local maxima is the use of a tabu list, that pre-
vents the algorithm from undoing operators (such as
an edge addition) that were performed only recently.
Despite the simplicity of this approach, and despite ex-
tensive attempts to find better methods, this baseline
has proven hard to beat.

3 Search over Orderings

3.1 Search Space

In this paper, we propose a very simple approach,
based on the observation that finding the best network
consistent with a given ordering ≺ is much easier than
the general case. We restrict the network in-degree —
the number of parents per node — to a fixed bound k.
We note that this assumption is commonly used in BN
structure learning algorithms, to help reduce the frag-
mentation of the data and the resulting over-fitting to
the training set. For a given ordering ≺ we can now
define the possible parent sets for the node Xi:

Ui,≺ = {U : U ≺ Xi, |U | ≤ k}. (2)

where U ≺ Xi is defined to hold when all nodes in U

precede Xi in ≺. The number of such parent sets is at
most

(

n
k

)

. The optimal parent set for each node Xi is
simply

Pa≺(Xi) = argmaxU∈Ui,≺
score(Xi, U) (3)

We can thus find the optimal parent set for each node
in time O(nfmax), where fmax is the maximal num-
ber of possible families per node. In this formulation,
fmax =

(

n
k

)

= O(nk). As the decisions for different
nodes do not constrain each other, this set of selected
families provides the optimal network G∗

≺ consistent

with ≺ and the in-degree bound k. We define this
network to be G∗

≺.

In the unconstrained case, we note that any acyclic
(directed) graph is consistent with some ordering.
Hence, the optimal network with no ordering con-
straint is simply the network G∗

≺∗ for

≺∗= argmax≺score(G∗
≺).

We can therefore find the optimal network by finding
the optimal ordering, where the score of an ordering is
the score of the best network consistent with it.

We perform this search using the same simple yet
successful approach of greedy local hill-climbing with
random restarts and a tabu list. Our state space is the
set of ordering O. While there are several possible sets
of operators over this space, a simple one that worked
well in our experiments is a simple swap operator:

(Xi1 , . . . , Xij
, Xij+1

, . . .) 7→ (Xi1 , . . . , Xij+1
, Xij

, . . .)
(4)

We perform the search by considering all n− 1 candi-
date successors of the current ordering. We compare
the delta-scores of the successor orderings obtained by
these swaps — the difference between their score and
the current one, and take the one that gives the high-
est delta-score. The tabu list is used to prevent the
algorithm from reversing a swap that was executed re-
cently in the search. We continue this process until a
local maximum is reached.

3.2 Caching and Pruning

Importantly, as is the case for Bayesian network
search, we can gain considerable savings by caching
computations. Consider the operator in Eq. (4), which
takes an ordering≺ to another ≺′. The possible parent
sets for a variable Xl other than Xij

and Xij+1
remain

unchanged, as the set of variables preceding them is
the same in ≺ and ≺′. Thus, for each operator, we
need only recompute the optimal parent sets for two
variables rather than n.

Moreover, if we take the step of going to ≺′, the
only “new” operators are swapping Xij−1

, Xij+1
and

swapping Xij
, Xij+2

. All other operators are the same
in ≺′ and in ≺, and, moreover, their delta-score rela-
tive to these two search states does not change. Thus,
if we move from ≺ to ≺′, we need only re-evaluate the
delta-score of the two newly-created operators.

Overall, if we have computed the delta-scores for
(all of the successors of) ≺, the cost of evaluating the
delta-scores for its chosen successor ≺′ is only 4fmax.

Each of our steps in our search requires time which
is linear in fmax. In addition, to initialize the search
we must initially compute the score, and hence the
sufficient statistics, for every possible family of every

variable given the initial ordering ≺. This cost can be
quite prohibitive for large networks and/or moderate
values of k, especially for data sets with a large number
of records.

We reduce this cost in several ways. First, we
use the efficient AD-tree data structure of Moore and
Lee [1997] to pre-compute the sufficient statistics for
all of the relevant families in advance. This structure
allows us to compute the sufficient statistics even for
large data sets, as in practice the computation time
will no longer be linear in the number of records of the
data set. We then rank the possible families for each
node Xi according to their score, computed using the
sufficient statistics. We can now find the best scoring
family of Xi consistent with ≺ by searching through
this list, selecting the first family consistent with ≺.

We can further reduce the cost by pruning the set
of possible parent sets for each node, thereby reducing
the cost of each step from fmax to feff < fmax. Specif-
ically, if U

′ ⊂ U , and score(Xi, U
′) ≥ score(Xi, U),

then we can eliminate the family U from considera-
tion: for any ordering ≺, if U is a legal choice as the
parent set of Xi, so is U

′, so the algorithm can al-
ways pick U

′ over U . This pruning has significant
effect in practice; for example, for the ICU-Alarm net-
work [Beinlich et al., 1989], we have observed cases
where fmax = 58905 whereas feff ≈ 250. This prun-
ing procedure is sound, in that it is guaranteed never
to remove the optimal parent set from consideration.
However, it only reduces the costs incurred during the
search itself; initially, we must still pre-compute the
scores of all possible parent sets.

We can reduce both costs using a heuristic pruning
procedure, which is not necessarily sound, based on the
sparse candidate algorithm of Friedman et al. [1999].
This heuristic reduces the search space by pre-selecting
a small set of candidate parents for each variable Xi.
We then only consider parent sets selected from among
this candidate set. In our implementation, we select
for each variable Xi a fixed-size set of candidate par-
ents that are the variables most strongly correlated
with Xi. This pre-selection reduces both the number
of families that we must score, and (subsequently) the
number of possible parent sets considered during the
search.

4 Experimental Results

4.1 Experimental Setup

We evaluated our algorithm — ordering-search — on
a variety of data sets, both synthetic and real (see
Table 1). We generated synthetic data sets from two
Bayesian networks: the ICU-Alarm network [Beinlich
et al., 1989] (alarm1, alarm2, and alarm3, which vary
in their size) and the Diabetes network [Andreassen

et al., 1991] (diabetes). We also used discretized ver-
sion of two real world yeast gene expression data sets:
one a large subset of a stress response data set [Gasch
et al., 2000] (stress), and the other a small subset of
the Rosetta yeast knockout data [Hughes et al., 2000]

(rosetta). We also ran on three of the data sets used by
Moore and Wong [2003] (alarm4, letters, and edsgc),
allowing a direct comparison to their results. To ob-
tain a baseline performance, we implemented the stan-
dard benchmark algorithm of greedy hill-climbing over
the space of graphs, with random restarts and a tabu
list (DAG-search). We use the same implementation
of AD-trees for computing the sufficient statistics, and
the same set of candidate parents per node, as selected
by the sparse candidate algorithm. We optimized this
baseline search as much as possible, and compared it
with other state-of-the-art systems, so that we are con-
vinced it is a fair benchmark.

Both search algorithms have a set of parameters
that affect its performance. We selected the size of
the tabu list and the number of random moves between
each restart using a systematic search, picking the best
set of parameters for each algorithm. The starting
point of both algorithms is also chosen according to
the performance of the search: for the DAG-search the
best results were given starting from an empty network
whereas for the ordering-search we chose a random
starting point. The number of moves without improve-
ment before restarting was selected to be the same as
the size of the tabu list. The number of candidate
parents per node was chosen between 10 and 30, de-
pending on the size of the data set and on the number
of nodes in the original network. For data generated
from a network, we selected the maximal in-degree k to
be the actual maximum in-degree in the network. For
real data, we set k = 3. These bounds were applied
both to DAG-search and to ordering-search. Finally, in
all runs we used the BDe score, with a uniform prior
and an equivalent sample size of 5. All experiments
were performed on a 700 MHz Pentium III with 2 gi-
gabytes of RAM.

4.2 Results

To compare the two searches, we recorded the best
scoring network found by each one, and the computa-
tion time at which this network was found. We ran
each experiment at least 4 times and averaged the re-
sults. Graphical results can be found in Figure 1 and
precise numerical values in Table 2.

In terms of computation time, DAG-search always
produces its first result before ordering-search. This
is due to the initial cost of precomputing all of the
family scores. However, as soon as this computa-
tion is over, our ordering-search converges almost in-
stantaneously. Overall, it appears that ordering-search

Table 1: Datasets used

DATA SET TYPE #INSTANCES #VARIABLES AVG #VALS/VAR MAX PARENTS

alarm1 Synthetic 100 37 2.8 4
alarm2 Synthetic 1000 37 2.8 4
alarm3 Synthetic 10K 37 2.8 4
alarm4 Synthetic 20K 37 2.8 4
diabetes Synthetic 10K 413 11.3 2
stress Real life 173 6100 3.0 —
rosetta Real life 284 37 3.0 —
letters Real life 20K 17 3.4 —
edsgc Real life 300K 24 2.0 —

alarm1

-14

-13.6

-13.2

-12.8

-12.4

-12

0 50 100 150 200

alarm4

-10.9

-10.88

-10.86

-10.84

-10.82

-10.8

0 40 80 120

diabetes

-600

-500

-400

-300

-200

0 1000 2000 3000

alarm2

-11.25

-11.23

-11.21

-11.19

-11.17

-11.15

0 50 100 150 200

letters

-10

-9.98

-9.96

-9.94

-9.92

-9.9

0 10 20 30

stress

-128

-123

-118

-113

0 1000 2000 3000

alarm3

-10.65

-10.63

-10.61

-10.59

-10.57

-10.55

0 50 100 150 200

edsgc

-6.7

-6.68

-6.66

-6.64

-6.62

-6.6

0 50 100 150 200

rosetta

-21.4

-21.3

-21.2

-21.1

-21.0

-20.9

0 600 1200 1800

Figure 1: BDe score per datapoint versus computation time. Ordering-search is represented by the thick line and
DAG-search by the thin line. When it is known, the score of the original network is represented by a dashed line.
A minimal vertical axis scale of 0.1 was used except where the difference between the two searches is too large.
Time is in seconds.

Table 2: Comparison of results achieved by ordering search (first number in each pair) and DAG search (second
number in each pair). The best result is in bold. BDe score and log-likelihood on test data are given per
datapoint. Time for convergence is in seconds.

DATA SET BDe SCORE LOG-LIKELIHOOD TIME FOR CONVERGENCE

alarm1 −12.62/−12.69 −9.42/ − 9.47 60/150
alarm2 −11.18/−11.18 −10.34/−10.34 33/150
alarm3 −10.58/−10.58 −10.38/−10.38 40/20

alarm4 −10.83/−10.83 −10.69/−10.69 35/16

diabetes −223/ − 271 −201/ − 247 2000/ > 3000
stress −112.6/ − 114.6 −75.8/ − 76.8 300/ > 3000
rosetta −21.02/ − 21.06 −17.12/ − 17.20 500/2500
letters −9.94/−9.94 −9.60/−9.60 2/25
edsgc −6.64/−6.64 −6.64/−6.64 20/150

mostly converges before DAG-search, and (in 1–2 cases)
a small constant factor afterwards. In terms of maxi-
mum score obtained by the algorithm, ordering-search

performs at least as well or better than DAG-search.
There are two main factors which affect the difficulty
of the search. First, the number of variables deter-
mines the size of the search space: the more variables,
the harder the search. The second main factor is the
number of records: if there are not many records in
the data set, the statistical signal is fainter and it is
hard for both algorithms to find the “right direction”
in the search.

The results from the experiments show us that
when there is roughly fewer than 50 variables and more
than 1, 000 records (alarm2, alarm3, alarm4, letters

and edsgc), both algorithms find the exact same best
value for each of the 4 runs of each experiment. Al-
though it can not be determined with certainty (due
to the NP-hardness of the problem), it appears likely
that both algorithms find the optimal networks. When
the number of variables gets larger (diabetes), we see
that ordering-search outperforms DAG-search. We be-
lieve that this improved performance is due both to the
reduced size of the ordering search space, and to the
fact that ordering-search takes much larger steps in the
search space, avoiding many local maxima. With small
data sets (alarm1 and rosetta), ordering-search also
gives better results. We believe that ordering-search

gains both from the fact that it takes larger steps in
the search, and from the fact that the search steps
themselves are faster. As the size of the data sets in-
creases (alarm1, alarm2, alarm3 and alarm4), the cost
of precomputing the family scores increases whereas
the statistical signal gets stronger, so that search-
ing greedily tends to work well. As a consequence,
the difference in performance between the two algo-
rithms decreases. For the largest data set (alarm4), we
note that the DAG-search outperforms ordering-search

in terms of time for convergence (but not in terms of
best scoring network found) because of the cost of pre-
processing step. Finally, for the stress data set which
has the largest number of variables (6, 100) and the
smallest number of instances (173), as expected, the
search in the space of orderings is much more efficient.

To conclude, when the search is easy (few vari-
ables and lots of records), both algorithms find the
exact same score and the solution found should be the
optimum. But, when the search gets harder, DAG-

search is no longer able to find the optimal solution
and ordering-search finds a better scoring network.

Both search algorithms are trying to optimize the
score, and hence measuring the score of the best net-
work found is the “fair” evaluation. However, we also
tested whether the differences in score translate to bet-
ter generalization performance on unseen data. We

therefore measured the log-likelihood of each model
found on a disjoint test set generated from the same
distribution. For synthetic data, we simply generated
more data from the network. For real data, we used
5-fold cross-validation and averaged the results of the
five folds. The results can be found in Table 2. We
obtain very similar results to the experiment on BDe
score. For big networks (> 50 nodes) or for small data
sets (< 100), the log-likelihood of the search in the
space of orderings is higher than in the space of di-
rected graphs. This result, while satisfying, is not sur-
prising, as BDe is known to be a reasonable surrogate
for generalization performance.

Finally, we compare our results on the data sets
alarm4, edsgc, and letter to the published results of the
OR-search (optimal reinsertion) algorithm of Moore
and Wong [2003]. It is hard to compare the BDe scores
obtained by the two algorithms, as Moore and Wong
do not report the BDe prior used in their experiments
(a choice which has an effect on the score). Neverthe-
less, both algorithms seem to give similar best scoring
networks, so it seems that they do not differ much on
this point. In terms of computation time, ordering-

search appears much faster, as shown in Table 3. We
note that the computation time reported for OR-search

is wall clock time whereas we use a CPU-time measure
for ordering-search. Although these measures are not
the same, this difference cannot account by itself for
the fact that ordering-search is an order of magnitude
faster. This conclusion is all the more safe as the re-
sults for OR-search were run on a much faster machine
(a 2 GHz Pentium 4, with 2 gigabytes of RAM, versus
our 700 MHz Pentium III).

Table 3: Comparison of results obtained by ordering-

search (first number in each pair) with the OR-search

of Moore and Wong (second number). The best result
is in bold. Running times are given in seconds.

DATA SET BDe SCORE RUNNING TIME

alarm4 −10.83/−10.83 35/250
letters −9.94/ − 10.0 2/150
edsgc −6.64/−6.62 15/100

5 Discussion and Conclusion

In this paper, we describe a simple and easy-to-
implement algorithm for learning Bayesian networks
from data. Our method is based on searching over
the space of orderings, rather than the standard space
of network structures. We note that other search
spaces have also been proposed, such as the space
of network equivalence classes [Chickering, 1996b;

Chickering, 2002], or the space of skeletons [Steck,
2000], but these involve fairly complex operators that
are computationally expensive and hard to imple-
ment. Our results show that our method outperforms
the state-of-the-art methods, both in finding higher-
scoring networks and in computation time.

There are several possible extensions to this work.
One can use a more clever approach to prune the
space of candidate families per node (e.g., [Moore and
Wong, 2003]). It would also be interesting to combine
our approach with other state-of-the-art BN structure
learning methods, such as the data perturbation ap-
proach of Elidan et al. [2002]. Finally, our method can
also be applied in a straightforward way to the task
of structure learning with incomplete data, using the
structural EM approach of Friedman [1997]. We use
the E-step to compute the expected sufficient statis-
tics and thereby the expected scores, and then apply
ordering-search as described. However, the computa-
tion of expected sufficient statistics requires inference,
and is therefore costly; it would be interesting to con-
struct heuristics that avoid a full recomputation at ev-
ery model modification step.

Acknowledgements. We thank Gal Elidan for useful
comments and for providing us with the rosetta and stress
data sets. This work was funded by DARPA’s EPCA pro-
gram under sub-contract to SRI International.

References

[Andreassen et al., 1991] S. Andreassen, R. Hovorka,
J. Benna, K. G. Olesen, and E. R. Carson. A model-
based approach to insulin adjustment. In Proc. Third
Conference on Artificial Intelligence in Medicine, 1991.

[Beinlich et al., 1989] L. Beinlich, H. Suermondt,
R. Chavez, and G. Cooper. The ALARM moni-
toring system: A case study with two probabilistic
inference techniques for belief networks. In Proc. Sec-
ond European Conference on Artificial Intelligence in
Medicine, pages 247–256. Springer Verlag, 1989.

[Buntine, 1991] W. L. Buntine. Theory refinement on
Bayesian networks. In Proc. Seventh Annual Confer-
ence on Uncertainty Artificial Intelligence, pages 52–60,
1991.

[Chickering et al., 2003] D. M. Chickering, C. Meek, and
D. Heckerman. Large-sample learning of Bayesian net-
works is hard. In Proc. Nineteenth Conference on Un-
certainty in Artificial Intelligence, pages 124–133, 2003.

[Chickering, 1996a] D. M. Chickering. Learning Bayesian
networks is NP-complete. In Learning from Data: Artifi-
cial Intelligence and Statistics V. Springer Verlag, 1996.

[Chickering, 1996b] D. M. Chickering. Learning equiv-
alence classes of Bayesian network structures. In
Proc. Twelfth Conference on Uncertainty in Artificial
Intelligence (UAI ’96), pages 150–157, 1996.

[Chickering, 2002] D. M. Chickering. Learning equivalence
classes of Bayesian-network structures. Journal of Ma-
chine Learning Research, 2:445–498, February 2002.

[Cooper and Herskovits, 1992] G. Cooper and E. Her-
skovits. A Bayesian method for the induction of prob-
abilistic networks from data. Machine Learning, 9:309–
347, 1992.

[Elidan et al., 2002] G. Elidan, M. Ninio, N. Friedman,
and D. Schuurmans. Data perturbation for escaping lo-
cal maxima in learning. In Proc. National Conference
on Artificial Intelligence (AAAI), 2002.

[Friedman and Koller, 2003] N. Friedman and D. Koller.
Being Bayesian about network structure: A Bayesian
approach to structure discovery in Bayesian networks.
Machine Learning, 50:95–126, 2003.

[Friedman et al., 1999] N. Friedman, I. Nachman, and
D. Pe’er. Learning Bayesian network structure from
massive datasets: The “sparse candidate” algorithm. In
Proc. Fifteenth Conference on Uncertainty in Artificial
Intelligence, pages 196–205, 1999.

[Friedman, 1997] N. Friedman. Learning belief networks in
the presence of missing values and hidden variables. In
Proceedings of the Fourteenth International Conference
on Machine Learning, pages 125–133. Morgan Kauf-
mann, San Francisco, 1997.

[Gasch et al., 2000] A. Gasch, P. Spellman, C. Kao,
O. Carmel-Harel, M. Eisen, G. Storz, D. Botstein, and
P. Brown. Genomic expression program in the response
of yeast cells to environmental changes. Mol. Bio. Cell,
11:4241–4257, 2000.

[Heckerman et al., 1995] D. Heckerman, D. Geiger, and
D. M. Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data. Machine
Learning, 20:197–243, 1995.

[Hughes et al., 2000] T. Hughes, M. Marton, A. Jones,
C. Roberts, R. Stoughton, C. Armour, H. Bennett,
E. Coffey, H. Dai, Y. He, M. Kidd, A. King, M. Meyer,
D. Slade, P. Lum, S. Stepaniants, D. Shoemaker, D. Ga-
chotte, K. Chakraburtty, J. Simon, M. Bard, and
S. Friend. Functional discovery via a compendium of
expression profiles. Cell, 102(1):109–26, 2000.

[Larranaga et al., 1996] P. Larranaga, C. Kuijpers,
R. Murga, and Y. Yurramendi. Learning Bayesian
network structures by searching for the best ordering
with genetic algorithms. IEEE Transactions on System,
Man and Cybernetics, 26(4):487–493, 1996.

[Moore and Lee, 1997] A. W. Moore and M. S. Lee.
Cached sufficient statistics for efficient machine learn-
ing with large datasets. Journal of Artificial Intelligence
Research, 8:67–91, 1997.

[Moore and Wong, 2003] A. Moore and W.-K. Wong. Op-
timal reinsertion: A new search operator for accelerated
and more accurate Bayesian network structure learning.
In Proc. International Conference on Machine Learning,
2003.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelli-
gent Systems. Morgan Kaufmann, San Mateo, Califor-
nia, 1988.

[Schwarz, 1978] G. Schwarz. Estimating the dimension of
a model. Annals of Stastics, 6:461–464, 1978.

[Steck, 2000] H. Steck. On the use of skeletons when learn-
ing in bayesian networks. In Proc. Sixteenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI ’00),
pages 558–65, 2000.

