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Data Acquisition

The data set for this analysis comes from GSE14193, where we will use the 6-weeks wild type and PiZ mice
data to perform analysis on a predetermined set of genes.

1. Read the GEO page on the data set to determine what data they provide and in what formats. For
this data set, the raw count data from an RNA-seq experiment is available

2. Download the file GSE141593_RAW. tar and unzip it. There will be one .txt.gz file per sample - since
we are only interested in the first 10 samples, we can delete or set aside the others. Unzip the individual
text files and take a look at their format so that they can be properly read into R later.

R Packages

Below is a list of R packages needed and how to install them. I highly recommend looking at the websites for
each to get an idea of how they work. Additionally, more information on any functions used can be found by
typing ?function.name() in the console.

1. BiocManager — used to install Bioconductor packages;
install.packages("BiocManager")

2. DESeq2 — tool for differential expression analysis; used here to normalize expression data
BiocManager: :install ("DESeq2")

3. openxlsx - write dataframes to excel files

install.packages("openxlsx")

4. bnlearn - for bayesian network analysis

install.packages("bnlearn")

5. Rgraphviz - for visualizing graphs

BiocManager: :install("Rgraphviz")

Data Pre-Processing

Some Bayesian network analysis tools require a specific format for the input, so the count data will need to
be processed into the correct format. The end goal of this step is a matrix of discrete expression values for
each gene per sample, in which the rows represent the samples, and the columns are the genes plus a column
for the experimental condition (wild type or PiZ mutant).

1. merge samples into a single matrix

Since the counts are in separate files, we will need to read in each file in R and combine them into a single
matrix based on the transcript IDs. Below is a summary of the steps taken to merge multiple files into one


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141593
https://bioconductor.org/install/
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://cran.r-project.org/web/packages/openxlsx/openxlsx.pdf
https://www.bnlearn.com/
https://bioconductor.org/packages/release/bioc/html/Rgraphviz.html

data frame.

e use the list.files() function to create a variable containing all the file names for each sample

e use the list () function create an empty list variable that will contain each sample’s file contents

o use a for loop to (1) read in each file, (2) assign names to the columns in the data, and (3) save it in
the list. The first column, which contains the gene IDs, should all have the same name. The second
column, which contains the counts for that particular sample, should be given a unique name that helps
identify which sample it is once they are merged.

e use Reduce(function(x,y) merge(x,y, all = TRUE, by = "transcript.id"), individual.files)
to merge all of the data frames contained in the list individual.files by the transcript.id column.

gse <- "GSE141593"

count.files <- list.files("./data/", pattern = "counts.txt")
gsm <- gsub(pattern = "_.*", replacement = "", count.files)

# read sample files into a list
individual.files <- list()
for (f in 1:length(count.files)){
filepath <- pasteO("./data/", count.files[f])
tmp <- read.table(filepath)

# give the count column a unique name for merging later
colnames (tmp) <- c("transcript.id", gsm[£f])
individual.files[[f]] <- tmp

# merge the datasets into one matrixz by the transcript td column
merged <- Reduce(function(x,y) merge(x,y, all = TRUE, by = "transcript.id"), individual.files)

# remove first 5 rows since we don't need them
merged <- merged[-c(1:5),]

# move transcript.id column to rownames and remove
rownames (merged) <- merged$transcript.id

merged <- merged[,-1]

head (merged)

2. normalize and scale counts using DESEq2’s estimateSizeFactors()
Normalize the count matrix using DESeq2’s median of ratio’s method then convert to Z-score.
o create a DESeq2 object from the newly merged count matrix
o filter low-expression genes
e use estimateSizeFactors() to estimate size factors for each sample
e return normalized counts using DESeq2’s counts() function with normalized set to TRUE

o standardize using the scale() function on the transposed count matrix

library(DESeq2)

# make a quick metadata table for DESeq2
metadata <- data.frame(sampleID = gsm,
treatment = c(rep("wild type", 5), rep("PiZ mutant", 5)))



metadata$treatment <- factor(metadata$treatment, levels = c("wild type", "PiZ mutant"), labels = c("wt"

# create DESeq object from count matriz, filter low expression genes and estimate size factors
diffxp <- DESeqDataSetFromMatrix(countData = merged,

colData = metadata,

design = ~ treatment)

keep <- rowSums(counts(diffxp) > 10) >= 3
diffxp <- diffxp[keep,]
diffxp <- estimateSizeFactors(diffxp)

#normalize and standardize
norm.counts <- counts(diffxp, normalized = TRUE)

standardized.counts <- scale(t(norm.counts))

# make sure its in the expected orientation
standardized.counts[1:5,1:5]

3. discretize gene expression based on Z-score
Label the gene expression values as
e “No Change” if the Z score is between -1 and 1,
e “Low” if the Z score is less than or equal to -1

e “High” if the Z-score is greater than or equal to 1

discretize_gene_vector <- function(gene_vector){

is_low <- gene_vector < -1
is_high <- gene_vector > 1
is_none <- !is_low & !is_high

gene_vector[is_none] <- "noChange"
gene_vector[is_low] <- "low"
gene_vector[is_high] <- "high"

return(gene_vector)

}

discrete.counts <- apply(standardized.counts, MARGIN = 2, discretize_gene_vector)

# double check
discrete.counts[1:5,1:5]
standardized.counts[1:5,1:5]

4. subset genes of interest and save final matrix

e read in file containing the genes of interest and find the index of the matching column names of the
new discrete count matrix

e create and save a data frame using the “treatment” column in the metadata and the relevant subset of
the count matrix



I saved the processed data set in 2 locations and formats: The first one is an R object in the folder that will
contain the bnlearn analysis, which will make it easy to load and use. The second one is optional, but I also
kept an Excel copy in case I need to refer to it later or want to use it in a separate analysis.

library(openxlsx)

# filter for genes of interest, and add treatment column —--————————————————-
genes <- read.table("./data/zn_transporter_genes.txt", sep = "\n")$V1
zn.goi <- which(colnames(discrete.counts) %inj genes)

pizmice.counts <- data.frame(pizMutation = metadata$treatment,
as.data.frame(discrete.counts[,zn.goil))

save(pizmice.counts, file = pasteO("./analysis/bnlearn/", gse, "_zn_transporter_gene_expr.RData"))

write.xlsx(pizmice.counts, file = paste0("./data/", gse, "_zn_transporter_gene_expr_clean.xlsx"))

Running bnlearn
1. learn the structure from the data/domain knowledge

Learn a structure using the data generated from the previous step. There are different types of algorithms
available in bnlearn and other tools learn structures from data. The score-based Hill Climbing algorithm is
used here via the function hc() . Note that for bnlearn, the data type must be a factor. Also, if you know
from literature certain relationships between your genes of interest, you can set the direction of specific arcs
using the set.arc() function.

library(bnlearn)
library (Rgraphviz)

#keep track of sample ids

sample.id <- rownames(pizmice.counts)

pizmice.counts <- data.frame(lapply(pizmice.counts, FUN = function(x) factor(x)))
str(pizmice.counts)

# re-add sample tds to Tow names
rownames (pizmice.counts) <- sample.id
rm(sample.id)

# Hill Climbing
pzm.hc <- hc(pizmice.counts, restart = 500)

# quick look via Rgraphviz
graphviz.plot(pzm.hc, layout = "dot")

2. Estimate parameters

Once we have a structure, the distribution parameters can be estimated using the structure and the data.
For discrete data, we can use MLE or Bayes method’s to fit the model.

pz.mle.fit <- bn.fit(pzm.hc, data = pizmice.counts, method = "mle")
pz.mle.fit
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