Scores of different parents sets in a giving order

Scores of different parents sets in a giving order

Postby zgong001 » Wed Feb 21, 2018 5:46 pm

I used Efrain's code and got the scores for different parents sets in a giving order and a giving variable. I used sprinkler dataset. The order I used is 0, 1, 2, 3, 4, 5, 6, 7. Each number means the 1st column (or the 1st variable), the 2nd column (or the 2nd variable), the 3rd column, ..., in the dataset file.


The scores are following:

-72.300931187921023
-64.815017844821099 -67.029426584943309
-65.606357051560266 -68.393477876804468 -24.320555846929555 -23.892865578321899
-57.917316536364019 -60.540943639885214 -46.58076400925836 -37.788282219748901 -51.405358171741561 -42.459561676983576 -38.863855727721955 -44.944531753759954
-70.344589690814118 -58.721905743888342 -63.319411750342404 -62.660497129252576 -69.11451536101869 -45.950214325379903 -48.482104959028796 -59.111014851999265 -66.098867830318355 -67.724441782785078 -64.761134684402705 -50.815164770190783 -53.802246108024583 -52.536866320157813 -70.316167120559967 -56.378507494074391
-64.815017844821099 -53.591114899407856 -52.494463855331965 -51.905248832682943 -62.818884063841161 -44.982253089975273 -35.449828206659255 -38.262282181464421 -52.711947273618186 -45.588524783700905 -52.469656730517265 -55.56716205142812 -41.537454210686235 -54.487608342450933 -41.405029625036903 -47.93765576088505 -37.454611302963862 -38.49396741892383 -40.46444908340424 -41.379303313687267 -43.25526541484372 -51.505376747228929 -55.661111679013302 -43.550665188113648 -47.834157666451588 -44.639602579934767 -40.781179936687906 -45.145371739791706 -45.987827386467423 -47.450653202909805 -47.62786578280916 -49.816264008524151
-64.815017844821099 -66.463504688309897 -67.243339068876423 -67.139756194062329 -67.165947384528508 -56.151585299512817 -67.494051643246095 -71.56127108966642 -71.255398806017467 -71.863971765157103 -60.126374729380053 -70.120424623184718 -71.362113618800521 -72.497883307066772 -58.089443166561402 -71.012628835405806 -72.148473673131548 -58.187701209399442 -70.893453734296415 -57.777341178490943 -72.15206377056117 -48.8452917753986 -78.006310735257387 -82.115157133262542 -63.467670975858461 -75.098250126935625 -79.877721818299605 -64.814840584478361 -75.102203780161332 -66.075338347295656 -78.886062054395524 -54.150757587274946 -78.787579139861194 -61.513480782077714 -77.021717099200742 -62.49482122971132 -79.833892667722537 -53.087986840237704 -62.443706711786206 -77.747171128928898 -53.171151623503746 -53.477856266132108 -89.503257834815557 -68.710802556556814 -83.609524091831773 -73.233969792284626 -88.856748458989259 -59.815317696826767 -73.367769449969941 -86.265774665409907 -60.662971584812411 -63.224502441945305 -66.656131387577659 -86.484684113454918 -57.161186394675248 -59.752963775099133 -58.40564745098056 -79.008477614756927 -97.757609732048621 -64.716876357678913 -70.259333164286929 -69.652523086748516 -63.36104377030771 -75.476317024145629
-70.344589690814118 -73.170319997975852 -71.766767309108715 -70.410865633518284 -71.6487230291104 -72.299234622654964 -73.055763228837762 -63.781513701139048 -76.804725172612052 -75.672987067308213 -77.614327201540419 -77.376552462620282 -78.401409793046923 -67.5321171791213 -73.197462633588103 -76.85771035638767 -74.66380019477765 -74.85495052768789 -66.984599916355279 -75.560411301156691 -70.641002783847597 -72.869229025736701 -62.690720694159609 -72.878715790222046 -76.650757608988997 -64.893216941803345 -77.399243719026217 -64.893462440710124 -69.540379176916545 -80.210882660493326 -88.039088362154203 -80.467747359173359 -82.927852542305757 -74.831430863582028 -85.308565259159437 -76.960139750784876 -81.153082246285464 -70.410143456456012 -82.546245789017291 -86.800148371007452 -71.999067012944877 -83.687641307533312 -72.444549322000526 -77.218977421702022 -80.181900341658633 -75.796956437694789 -77.133068059441555 -67.35433836123434 -78.572236847192173 -83.645402854552842 -74.037753283703466 -82.295647082552392 -70.222453844115989 -73.748076576685293 -75.362486451179635 -80.140495515867343 -68.314031597959072 -77.557426388777131 -65.72668753806434 -67.790452158078011 -80.544884960791833 -67.337316904786704 -72.403382519968801 -71.381534481087499 -92.489054435813443 -83.582793572674262 -88.313241332353883 -77.872087509928505 -90.290592696150412 -98.14251709667802 -88.42917472158706 -88.915710416290324 -79.349368171466821 -82.902020458241751 -86.905369064242834 -94.17556217358846 -82.150520970996766 -84.571435484347546 -75.216721036188559 -76.737967720076512 -91.751281854943628 -80.381395552916743 -84.411684074383047 -80.441700948598594 -81.931636699563825 -86.373581656045047 -74.417796666823733 -84.802103288131278 -71.992994762866871 -74.785616165030987 -88.96167342809801 -76.09241016662223 -83.710494637773351 -78.911670438306786 -84.832900987903201 -72.722456041266312 -76.191096021974445 -72.940487006305517 -75.854596682641926 -95.724665075352945 -104.07820037062886 -91.82405146164254 -93.629725853419785 -83.109928915488283 -87.1812568145059 -101.78526099604426 -92.458008370857002 -100.01867629756509 -88.972947338702767 -97.450003723864526 -88.713317708278879 -91.634480721116049 -83.344870658156864 -90.676580588375984 -93.527589786974588 -80.508419153218156 -84.653666562299804 -81.668056505322824 -87.30057295913322 -82.723800444960773 -108.69132008269976 -98.817307132182719 -104.23794968841941 -93.926851634831834 -104.96646775746277 -100.07479414933029 -92.917963280609442 -112.77741636858212


Next I am going to add label for each score.
zgong001
 
Posts: 463
Joined: Thu Nov 16, 2017 11:10 am

Re: Scores of different parents sets in a giving order

Postby zgong001 » Mon Mar 05, 2018 10:26 am

The following is the scores of parents sets for every variable in giving order of 0, 1, 2, 3, 4, 5, 6, 7. These numbers mean the column number of raw input text file (sprinkler dataset). The "#" means the parent sets is empty or this variable does not have parent.

The symbol in front of ":" is the parents set. The symbol behind of ":" is the score.

For example:

For variable 2:
#, : -65.6064; 0, : -68.3935; 0,1, : -23.8929; 1, : -24.3206;

That means: for variable 2, if the parent is only 0, the score is -68.3935; if the parents is 0 and 1, the score is -23.8929.


Total score:
-389.9586893

For variable 0:
#, : -72.3009;

For variable 1:
#, : -64.815; 0, : -67.0294;

For variable 2:
#, : -65.6064; 0, : -68.3935; 0,1, : -23.8929; 1, : -24.3206;

For variable 3:
#, : -57.9173; 0, : -60.5409; 0,1, : -51.4054; 0,1,2, : -44.9445; 0,2, : -42.4596; 1, : -46.5808; 1,2, : -38.8639; 2, : -37.7883;

For variable 4:
#, : -70.3446; 0, : -58.7219; 0,1, : -45.9502; 0,1,2, : -50.8152; 0,1,2,3, : -56.3785; 0,1,3, : -53.8022; 0,2, : -48.4821; 0,2,3, : -52.5369; 0,3, : -59.111; 1, : -63.3194; 1,2, : -66.0989; 1,2,3, : -70.3162; 1,3, : -67.7244; 2, : -62.6605; 2,3, : -64.7611; 3, : -69.1145;

For variable 5:
#, : -64.815; 0, : -53.5911; 0,1, : -35.4498; 0,1,2, : -37.4546; 0,1,2,3, : -40.7812; 0,1,2,3,4, : -49.8163; 0,1,2,4, : -45.1454; 0,1,3, : -38.494; 0,1,3,4, : -45.9878; 0,1,4, : -40.4644; 0,2, : -38.2623; 0,2,3, : -41.3793; 0,2,3,4, : -47.4507; 0,2,4, : -43.2553; 0,3, : -52.7119; 0,3,4, : -51.5054; 0,4, : -45.5885; 1, : -52.4945; 1,2, : -52.4697; 1,2,3, : -55.6611; 1,2,3,4, : -47.6279; 1,2,4, : -43.5507; 1,3, : -55.5672; 1,3,4, : -47.8342; 1,4, : -41.5375; 2, : -51.9052; 2,3, : -54.4876; 2,3,4, : -44.6396; 2,4, : -41.405; 3, : -62.8189; 3,4, : -47.9377; 4, : -44.9823;

For variable 6:
#, : -64.815; 0, : -66.4635; 0,1, : -71.5613; 0,1,2, : -78.0063; 0,1,2,3, : -89.5033; 0,1,2,3,4, : -79.0085; 0,1,2,3,4,5, : -75.4763; 0,1,2,3,5, : -97.7576; 0,1,2,4, : -68.7108; 0,1,2,4,5, : -64.7169; 0,1,2,5, : -83.6095; 0,1,3, : -82.1152; 0,1,3,4, : -73.234; 0,1,3,4,5, : -70.2593; 0,1,3,5, : -88.8567; 0,1,4, : -63.4677; 0,1,4,5, : -59.8153; 0,1,5, : -75.0983; 0,2, : -71.2554; 0,2,3, : -79.8777; 0,2,3,4, : -73.3678; 0,2,3,4,5, : -69.6525; 0,2,3,5, : -86.2658; 0,2,4, : -64.8148; 0,2,4,5, : -60.663; 0,2,5, : -75.1022; 0,3, : -71.864; 0,3,4, : -66.0753; 0,3,4,5, : -63.2245; 0,3,5, : -78.8861; 0,4, : -60.1264; 0,4,5, : -54.1508; 0,5, : -70.1204; 1, : -67.2433; 1,2, : -71.3621; 1,2,3, : -78.7876; 1,2,3,4, : -66.6561; 1,2,3,4,5, : -63.361; 1,2,3,5, : -86.4847; 1,2,4, : -61.5135; 1,2,4,5, : -57.1612; 1,2,5, : -77.0217; 1,3, : -72.4979; 1,3,4, : -62.4948; 1,3,4,5, : -59.753; 1,3,5, : -79.8339; 1,4, : -58.0894; 1,4,5, : -53.088; 1,5, : -71.0126; 2, : -67.1398; 2,3, : -72.1485; 2,3,4, : -62.4437; 2,3,4,5, : -58.4056; 2,3,5, : -77.7472; 2,4, : -58.1877; 2,4,5, : -53.1712; 2,5, : -70.8935; 3, : -67.1659; 3,4, : -57.7773; 3,4,5, : -53.4779; 3,5, : -72.1521; 4, : -56.1516; 4,5, : -48.8453; 5, : -67.4941;

For variable 7:
#, : -70.3446; 0, : -73.1703; 0,1, : -76.8047; 0,1,2, : -80.2109; 0,1,2,3, : -92.4891; 0,1,2,3,4, : -95.7247; 0,1,2,3,4,5, : -108.691; 0,1,2,3,4,5,6, : -112.777; 0,1,2,3,4,6, : -98.8173; 0,1,2,3,5, : -104.078; 0,1,2,3,5,6, : -104.238; 0,1,2,3,6, : -91.8241; 0,1,2,4, : -83.5828; 0,1,2,4,5, : -93.6297; 0,1,2,4,5,6, : -93.9269; 0,1,2,4,6, : -83.1099; 0,1,2,5, : -88.3132; 0,1,2,5,6, : -87.1813; 0,1,2,6, : -77.8721; 0,1,3, : -88.0391; 0,1,3,4, : -90.2906; 0,1,3,4,5, : -101.785; 0,1,3,4,5,6, : -104.966; 0,1,3,4,6, : -92.458; 0,1,3,5, : -98.1425; 0,1,3,5,6, : -100.019; 0,1,3,6, : -88.4292; 0,1,4, : -80.4677; 0,1,4,5, : -88.9157; 0,1,4,5,6, : -88.9729; 0,1,4,6, : -79.3494; 0,1,5, : -82.9279; 0,1,5,6, : -82.902; 0,1,6, : -74.8314; 0,2, : -75.673; 0,2,3, : -85.3086; 0,2,3,4, : -86.9054; 0,2,3,4,5, : -97.45; 0,2,3,4,5,6, : -100.075; 0,2,3,4,6, : -88.7133; 0,2,3,5, : -94.1756; 0,2,3,5,6, : -91.6345; 0,2,3,6, : -82.1505; 0,2,4, : -76.9601; 0,2,4,5, : -84.5714; 0,2,4,5,6, : -83.3449; 0,2,4,6, : -75.2167; 0,2,5, : -81.1531; 0,2,5,6, : -76.738; 0,2,6, : -70.4101; 0,3, : -77.6143; 0,3,4, : -82.5462; 0,3,4,5, : -91.7513; 0,3,4,5,6, : -90.6766; 0,3,4,6, : -80.3814; 0,3,5, : -86.8001; 0,3,5,6, : -84.4117; 0,3,6, : -71.9991; 0,4, : -77.3766; 0,4,5, : -83.6876; 0,4,5,6, : -80.4417; 0,4,6, : -72.4445; 0,5, : -78.4014; 0,5,6, : -77.219; 0,6, : -67.5321; 1, : -71.7668; 1,2, : -73.1975; 1,2,3, : -80.1819; 1,2,3,4, : -81.9316; 1,2,3,4,5, : -93.5276; 1,2,3,4,5,6, : -92.918; 1,2,3,4,6, : -80.5084; 1,2,3,5, : -86.3736; 1,2,3,5,6, : -84.6537; 1,2,3,6, : -74.4178; 1,2,4, : -75.797; 1,2,4,5, : -84.8021; 1,2,4,5,6, : -81.6681; 1,2,4,6, : -71.993; 1,2,5, : -77.1331; 1,2,5,6, : -74.7856; 1,2,6, : -67.3543; 1,3, : -76.8577; 1,3,4, : -78.5722; 1,3,4,5, : -88.9617; 1,3,4,5,6, : -87.3006; 1,3,4,6, : -76.0924; 1,3,5, : -83.6454; 1,3,5,6, : -83.7105; 1,3,6, : -74.0378; 1,4, : -74.6638; 1,4,5, : -82.2956; 1,4,5,6, : -78.9117; 1,4,6, : -70.2225; 1,5, : -74.855; 1,5,6, : -73.7481; 1,6, : -66.9846; 2, : -70.4109; 2,3, : -75.5604; 2,3,4, : -75.3625; 2,3,4,5, : -84.8329; 2,3,4,5,6, : -82.7238; 2,3,4,6, : -72.7225; 2,3,5, : -80.1405; 2,3,5,6, : -76.1911; 2,3,6, : -68.314; 2,4, : -70.641; 2,4,5, : -77.5574; 2,4,5,6, : -72.9405; 2,4,6, : -65.7267; 2,5, : -72.8692; 2,5,6, : -67.7905; 2,6, : -62.6907; 3, : -71.6487; 3,4, : -72.8787; 3,4,5, : -80.5449; 3,4,5,6, : -75.8546; 3,4,6, : -67.3373; 3,5, : -76.6508; 3,5,6, : -72.4034; 3,6, : -64.8932; 4, : -72.2992; 4,5, : -77.3992; 4,5,6, : -71.3815; 4,6, : -64.8935; 5, : -73.0558; 5,6, : -69.5404; 6, : -63.7815;
zgong001
 
Posts: 463
Joined: Thu Nov 16, 2017 11:10 am

Re: Scores of different parents sets in a giving order

Postby zgong001 » Mon Mar 05, 2018 2:28 pm

The following scores are based on the order of 4 7 5 3 2 0 1 6.

Total score:
-400.734583398


For variable 0:
#, : -70.3446;

For variable 1:
#, : -70.3446; 4, : -72.2992;

For variable 2:
#, : -64.815; 4, : -44.9823; 4,7, : -50.0823; 7, : -67.5262;

For variable 3:
#, : -57.9173; 4, : -56.6872; 4,5, : -59.6426; 4,7, : -57.2667; 4,7,5, : -62.7883; 5, : -55.9212; 7, : -59.2214; 7,5, : -59.5162;

For variable 4:
#, : -65.6064; 3, : -45.4773; 4, : -57.9223; 4,3, : -41.1239; 4,5, : -54.345; 4,5,3, : -37.8259; 4,7, : -56.264; 4,7,3, : -43.6077; 4,7,5, : -54.5032; 4,7,5,3, : -42.1139; 5, : -52.6966; 5,3, : -37.146; 7, : -65.6726; 7,3, : -49.389; 7,5, : -52.5101; 7,5,3, : -40.6358;

For variable 5:
#, : -72.3009; 2, : -75.0881; 3, : -74.9246; 3,2, : -79.7593; 4, : -60.6782; 4,2, : -60.9097; 4,3, : -64.9211; 4,3,2, : -67.5351; 4,5, : -61.2845; 4,5,2, : -62.7599; 4,5,3, : -68.4888; 4,5,3,2, : -70.3461; 4,7, : -65.7556; 4,7,2, : -67.2288; 4,7,3, : -74.5886; 4,7,3,2, : -79.0779; 4,7,5, : -67.5729; 4,7,5,2, : -69.7739; 4,7,5,3, : -79.6952; 4,7,5,3,2, : -82.9632; 5, : -61.077; 5,2, : -61.4451; 5,3, : -64.8176; 5,3,2, : -66.651; 7, : -75.1267; 7,2, : -80.3502; 7,3, : -80.8902; 7,3,2, : -89.5075; 7,5, : -66.4227; 7,5,2, : -69.7289; 7,5,3, : -74.967; 7,5,3,2, : -80.6861;

For variable 6:
#, : -64.815; 0, : -67.0294; 2, : -23.5292; 2,0, : -22.5288; 3, : -53.4785; 3,0, : -57.8938; 3,2, : -24.6048; 3,2,0, : -25.0138; 4, : -57.7898; 4,0, : -54.2577; 4,2, : -26.9676; 4,2,0, : -24.8619; 4,3, : -52.0884; 4,3,0, : -52.5851; 4,3,2, : -30.1598; 4,3,2,0, : -28.8554; 4,5, : -54.345; 4,5,0, : -49.1337; 4,5,2, : -29.1132; 4,5,2,0, : -26.752; 4,5,3, : -51.9849; 4,5,3,0, : -47.0675; 4,5,3,2, : -33.1481; 4,5,3,2,0, : -31.221; 4,7, : -60.1544; 4,7,0, : -57.3489; 4,7,2, : -32.1235; 4,7,2,0, : -31.4845; 4,7,3, : -57.7819; 4,7,3,0, : -60.3294; 4,7,3,2, : -36.729; 4,7,3,2,0, : -37.6747; 4,7,5, : -59.2414; 4,7,5,0, : -54.3617; 4,7,5,2, : -36.3579; 4,7,5,2,0, : -35.8103; 4,7,5,3, : -60.4017; 4,7,5,3,0, : -57.1015; 4,7,5,3,2, : -41.8428; 4,7,5,3,2,0, : -42.4624; 5, : -52.4945; 5,0, : -48.8881; 5,2, : -24.0936; 5,2,0, : -21.7211; 5,3, : -46.2267; 5,3,0, : -43.6759; 5,3,2, : -25.7783; 5,3,2,0, : -24.4157; 7, : -66.2372; 7,0, : -70.6638; 7,2, : -26.3158; 7,2,0, : -27.0667; 7,3, : -58.6875; 7,3,0, : -68.3186; 7,3,2, : -29.2263; 7,3,2,0, : -32.1943; 7,5, : -54.2937; 7,5,0, : -53.4146; 7,5,2, : -28.3575; 7,5,2,0, : -28.8813; 7,5,3, : -53.2214; 7,5,3,0, : -55.0182; 7,5,3,2, : -32.0114; 7,5,3,2,0, : -34.3183;

For variable 7:
#, : -64.815; 0, : -66.4635; 0,1, : -71.5613; 1, : -67.2433; 2, : -67.1398; 2,0, : -71.2554; 2,0,1, : -78.0063; 2,1, : -71.3621; 3, : -67.1659; 3,0, : -71.864; 3,0,1, : -82.1152; 3,1, : -72.4979; 3,2, : -72.1485; 3,2,0, : -79.8777; 3,2,0,1, : -89.5033; 3,2,1, : -78.7876; 4, : -56.1516; 4,0, : -60.1264; 4,0,1, : -63.4677; 4,1, : -58.0894; 4,2, : -58.1877; 4,2,0, : -64.8148; 4,2,0,1, : -68.7108; 4,2,1, : -61.5135; 4,3, : -57.7773; 4,3,0, : -66.0753; 4,3,0,1, : -73.234; 4,3,1, : -62.4948; 4,3,2, : -62.4437; 4,3,2,0, : -73.3678; 4,3,2,0,1, : -79.0085; 4,3,2,1, : -66.6561; 4,5, : -48.8453; 4,5,0, : -54.1508; 4,5,0,1, : -59.8153; 4,5,1, : -53.088; 4,5,2, : -53.1712; 4,5,2,0, : -60.663; 4,5,2,0,1, : -64.7169; 4,5,2,1, : -57.1612; 4,5,3, : -53.4779; 4,5,3,0, : -63.2245; 4,5,3,0,1, : -70.2593; 4,5,3,1, : -59.753; 4,5,3,2, : -58.4056; 4,5,3,2,0, : -69.6525; 4,5,3,2,0,1, : -75.4763; 4,5,3,2,1, : -63.361; 4,7, : -48.7458; 4,7,0, : -55.1944; 4,7,0,1, : -62.3493; 4,7,1, : -53.6481; 4,7,2, : -53.2734; 4,7,2,0, : -63.0714; 4,7,2,0,1, : -68.2379; 4,7,2,1, : -57.7095; 4,7,3, : -52.2359; 4,7,3,0, : -63.9105; 4,7,3,0,1, : -75.4014; 4,7,3,1, : -60.015; 4,7,3,2, : -59.8037; 4,7,3,2,0, : -75.1757; 4,7,3,2,0,1, : -82.1011; 4,7,3,2,1, : -65.2329; 4,7,5, : -42.8276; 4,7,5,0, : -50.9048; 4,7,5,0,1, : -59.8726; 4,7,5,1, : -49.704; 4,7,5,2, : -48.5542; 4,7,5,2,0, : -59.4364; 4,7,5,2,0,1, : -65.014; 4,7,5,2,1, : -54.0271; 4,7,5,3, : -48.7876; 4,7,5,3,0, : -62.1498; 4,7,5,3,0,1, : -73.4405; 4,7,5,3,1, : -58.0919; 4,7,5,3,2, : -56.2965; 4,7,5,3,2,0, : -72.2773; 4,7,5,3,2,0,1, : -79.5624; 4,7,5,3,2,1, : -62.7514; 5, : -67.4941; 5,0, : -70.1204; 5,0,1, : -75.0983; 5,1, : -71.0126; 5,2, : -70.8935; 5,2,0, : -75.1022; 5,2,0,1, : -83.6095; 5,2,1, : -77.0217; 5,3, : -72.1521; 5,3,0, : -78.8861; 5,3,0,1, : -88.8567; 5,3,1, : -79.8339; 5,3,2, : -77.7472; 5,3,2,0, : -86.2658; 5,3,2,0,1, : -97.7576; 5,3,2,1, : -86.4847; 7, : -58.2519; 7,0, : -60.8253; 7,0,1, : -69.588; 7,1, : -62.4612; 7,2, : -59.4196; 7,2,0, : -65.9926; 7,2,0,1, : -75.6675; 7,2,1, : -65.519; 7,3, : -60.4104; 7,3,0, : -66.2487; 7,3,0,1, : -82.5052; 7,3,1, : -69.6779; 7,3,2, : -64.9021; 7,3,2,0, : -76.7197; 7,3,2,0,1, : -88.8383; 7,3,2,1, : -73.0235; 7,5, : -63.9787; 7,5,0, : -68.938; 7,5,0,1, : -75.0724; 7,5,1, : -69.9058; 7,5,2, : -65.8147; 7,5,2,0, : -70.6871; 7,5,2,0,1, : -82.4775; 7,5,2,1, : -74.6743; 7,5,3, : -67.9047; 7,5,3,0, : -76.4976; 7,5,3,0,1, : -90.7329; 7,5,3,1, : -79.899; 7,5,3,2, : -73.7978; 7,5,3,2,0, : -83.7247; 7,5,3,2,0,1, : -97.9174; 7,5,3,2,1, : -84.7648;
zgong001
 
Posts: 463
Joined: Thu Nov 16, 2017 11:10 am

Re: Scores of different parents sets in a giving order

Postby zgong001 » Mon Mar 12, 2018 4:57 pm

The following is the sorted scores for each variable.

For variable 0:
#,|0 : -72.3009;

For variable 1:
#,|1 : -64.815; 0,|1 : -67.0294;

For variable 2:
0,1,|2 : -23.8929; 1,|2 : -24.3206; #,|2 : -65.6064; 0,|2 : -68.3935;

For variable 3:
2,|3 : -37.7883; 1,2,|3 : -38.8639; 0,2,|3 : -42.4596; 0,1,2,|3 : -44.9445; 1,|3 : -46.5808; 0,1,|3 : -51.4054; #,|3 : -57.9173; 0,|3 : -60.5409;

For variable 4:
0,1,|4 : -45.9502; 0,2,|4 : -48.4821; 0,1,2,|4 : -50.8152; 0,2,3,|4 : -52.5369; 0,1,3,|4 : -53.8022; 0,1,2,3,|4 : -56.3785; 0,|4 : -58.7219; 0,3,|4 : -59.111; 2,|4 : -62.6605; 1,|4 : -63.3194; 2,3,|4 : -64.7611; 1,2,|4 : -66.0989; 1,3,|4 : -67.7244; 3,|4 : -69.1145; 1,2,3,|4 : -70.3162; #,|4 : -70.3446;

For variable 5:
0,1,|5 : -35.4498; 0,1,2,|5 : -37.4546; 0,2,|5 : -38.2623; 0,1,3,|5 : -38.494; 0,1,4,|5 : -40.4644; 0,1,2,3,|5 : -40.7812; 0,2,3,|5 : -41.3793; 2,4,|5 : -41.405; 1,4,|5 : -41.5375; 0,2,4,|5 : -43.2553; 1,2,4,|5 : -43.5507; 2,3,4,|5 : -44.6396; 4,|5 : -44.9823; 0,1,2,4,|5 : -45.1454; 0,4,|5 : -45.5885; 0,1,3,4,|5 : -45.9878; 0,2,3,4,|5 : -47.4507; 1,2,3,4,|5 : -47.6279; 1,3,4,|5 : -47.8342; 3,4,|5 : -47.9377; 0,1,2,3,4,|5 : -49.8163; 0,3,4,|5 : -51.5054; 2,|5 : -51.9052; 1,2,|5 : -52.4697; 1,|5 : -52.4945; 0,3,|5 : -52.7119; 0,|5 : -53.5911; 2,3,|5 : -54.4876; 1,3,|5 : -55.5672; 1,2,3,|5 : -55.6611; 3,|5 : -62.8189; #,|5 : -64.815;

For variable 6:
4,5,|6 : -48.8453; 1,4,5,|6 : -53.088; 2,4,5,|6 : -53.1712; 3,4,5,|6 : -53.4779; 0,4,5,|6 : -54.1508; 4,|6 : -56.1516; 1,2,4,5,|6 : -57.1612; 3,4,|6 : -57.7773; 1,4,|6 : -58.0894; 2,4,|6 : -58.1877; 2,3,4,5,|6 : -58.4056; 1,3,4,5,|6 : -59.753; 0,1,4,5,|6 : -59.8153; 0,4,|6 : -60.1264; 0,2,4,5,|6 : -60.663; 1,2,4,|6 : -61.5135; 2,3,4,|6 : -62.4437; 1,3,4,|6 : -62.4948; 0,3,4,5,|6 : -63.2245; 1,2,3,4,5,|6 : -63.361; 0,1,4,|6 : -63.4677; 0,1,2,4,5,|6 : -64.7169; 0,2,4,|6 : -64.8148; #,|6 : -64.815; 0,3,4,|6 : -66.0753; 0,|6 : -66.4635; 1,2,3,4,|6 : -66.6561; 2,|6 : -67.1398; 3,|6 : -67.1659; 1,|6 : -67.2433; 5,|6 : -67.4941; 0,1,2,4,|6 : -68.7108; 0,2,3,4,5,|6 : -69.6525; 0,5,|6 : -70.1204; 0,1,3,4,5,|6 : -70.2593; 2,5,|6 : -70.8935; 1,5,|6 : -71.0126; 0,2,|6 : -71.2554; 1,2,|6 : -71.3621; 0,1,|6 : -71.5613; 0,3,|6 : -71.864; 2,3,|6 : -72.1485; 3,5,|6 : -72.1521; 1,3,|6 : -72.4979; 0,1,3,4,|6 : -73.234; 0,2,3,4,|6 : -73.3678; 0,1,5,|6 : -75.0983; 0,2,5,|6 : -75.1022; 0,1,2,3,4,5,|6 : -75.4763; 1,2,5,|6 : -77.0217; 2,3,5,|6 : -77.7472; 0,1,2,|6 : -78.0063; 1,2,3,|6 : -78.7876; 0,3,5,|6 : -78.8861; 0,1,2,3,4,|6 : -79.0085; 1,3,5,|6 : -79.8339; 0,2,3,|6 : -79.8777; 0,1,3,|6 : -82.1152; 0,1,2,5,|6 : -83.6095; 0,2,3,5,|6 : -86.2658; 1,2,3,5,|6 : -86.4847; 0,1,3,5,|6 : -88.8567; 0,1,2,3,|6 : -89.5033; 0,1,2,3,5,|6 : -97.7576;

For variable 7:
2,6,|7 : -62.6907; 6,|7 : -63.7815; 3,6,|7 : -64.8932; 4,6,|7 : -64.8935; 2,4,6,|7 : -65.7267; 1,6,|7 : -66.9846; 3,4,6,|7 : -67.3373; 1,2,6,|7 : -67.3543; 0,6,|7 : -67.5321; 2,5,6,|7 : -67.7905; 2,3,6,|7 : -68.314; 5,6,|7 : -69.5404; 1,4,6,|7 : -70.2225; #,|7 : -70.3446; 0,2,6,|7 : -70.4101; 2,|7 : -70.4109; 2,4,|7 : -70.641; 4,5,6,|7 : -71.3815; 3,|7 : -71.6487; 1,|7 : -71.7668; 1,2,4,6,|7 : -71.993; 0,3,6,|7 : -71.9991; 4,|7 : -72.2992; 3,5,6,|7 : -72.4034; 0,4,6,|7 : -72.4445; 2,3,4,6,|7 : -72.7225; 2,5,|7 : -72.8692; 3,4,|7 : -72.8787; 2,4,5,6,|7 : -72.9405; 5,|7 : -73.0558; 0,|7 : -73.1703; 1,2,|7 : -73.1975; 1,5,6,|7 : -73.7481; 1,3,6,|7 : -74.0378; 1,2,3,6,|7 : -74.4178; 1,4,|7 : -74.6638; 1,2,5,6,|7 : -74.7856; 0,1,6,|7 : -74.8314; 1,5,|7 : -74.855; 0,2,4,6,|7 : -75.2167; 2,3,4,|7 : -75.3625; 2,3,|7 : -75.5604; 0,2,|7 : -75.673; 1,2,4,|7 : -75.797; 3,4,5,6,|7 : -75.8546; 1,3,4,6,|7 : -76.0924; 2,3,5,6,|7 : -76.1911; 3,5,|7 : -76.6508; 0,2,5,6,|7 : -76.738; 0,1,|7 : -76.8047; 1,3,|7 : -76.8577; 0,2,4,|7 : -76.9601; 1,2,5,|7 : -77.1331; 0,5,6,|7 : -77.219; 0,4,|7 : -77.3766; 4,5,|7 : -77.3992; 2,4,5,|7 : -77.5574; 0,3,|7 : -77.6143; 0,1,2,6,|7 : -77.8721; 0,5,|7 : -78.4014; 1,3,4,|7 : -78.5722; 1,4,5,6,|7 : -78.9117; 0,1,4,6,|7 : -79.3494; 2,3,5,|7 : -80.1405; 1,2,3,|7 : -80.1819; 0,1,2,|7 : -80.2109; 0,3,4,6,|7 : -80.3814; 0,4,5,6,|7 : -80.4417; 0,1,4,|7 : -80.4677; 1,2,3,4,6,|7 : -80.5084; 3,4,5,|7 : -80.5449; 0,2,5,|7 : -81.1531; 1,2,4,5,6,|7 : -81.6681; 1,2,3,4,|7 : -81.9316; 0,2,3,6,|7 : -82.1505; 1,4,5,|7 : -82.2956; 0,3,4,|7 : -82.5462; 2,3,4,5,6,|7 : -82.7238; 0,1,5,6,|7 : -82.902; 0,1,5,|7 : -82.9279; 0,1,2,4,6,|7 : -83.1099; 0,2,4,5,6,|7 : -83.3449; 0,1,2,4,|7 : -83.5828; 1,3,5,|7 : -83.6454; 0,4,5,|7 : -83.6876; 1,3,5,6,|7 : -83.7105; 0,3,5,6,|7 : -84.4117; 0,2,4,5,|7 : -84.5714; 1,2,3,5,6,|7 : -84.6537; 1,2,4,5,|7 : -84.8021; 2,3,4,5,|7 : -84.8329; 0,2,3,|7 : -85.3086; 1,2,3,5,|7 : -86.3736; 0,3,5,|7 : -86.8001; 0,2,3,4,|7 : -86.9054; 0,1,2,5,6,|7 : -87.1813; 1,3,4,5,6,|7 : -87.3006; 0,1,3,|7 : -88.0391; 0,1,2,5,|7 : -88.3132; 0,1,3,6,|7 : -88.4292; 0,2,3,4,6,|7 : -88.7133; 0,1,4,5,|7 : -88.9157; 1,3,4,5,|7 : -88.9617; 0,1,4,5,6,|7 : -88.9729; 0,1,3,4,|7 : -90.2906; 0,3,4,5,6,|7 : -90.6766; 0,2,3,5,6,|7 : -91.6345; 0,3,4,5,|7 : -91.7513; 0,1,2,3,6,|7 : -91.8241; 0,1,3,4,6,|7 : -92.458; 0,1,2,3,|7 : -92.4891; 1,2,3,4,5,6,|7 : -92.918; 1,2,3,4,5,|7 : -93.5276; 0,1,2,4,5,|7 : -93.6297; 0,1,2,4,5,6,|7 : -93.9269; 0,2,3,5,|7 : -94.1756; 0,1,2,3,4,|7 : -95.7247; 0,2,3,4,5,|7 : -97.45; 0,1,3,5,|7 : -98.1425; 0,1,2,3,4,6,|7 : -98.8173; 0,1,3,5,6,|7 : -100.019; 0,2,3,4,5,6,|7 : -100.075; 0,1,3,4,5,|7 : -101.785; 0,1,2,3,5,|7 : -104.078; 0,1,2,3,5,6,|7 : -104.238; 0,1,3,4,5,6,|7 : -104.966; 0,1,2,3,4,5,|7 : -108.691; 0,1,2,3,4,5,6,|7 : -112.777;
zgong001
 
Posts: 463
Joined: Thu Nov 16, 2017 11:10 am

Re: Scores of different parents sets in a giving order

Postby zgong001 » Mon Mar 12, 2018 5:02 pm

From each variable, if we take the first highest scores, we get the structure with the highest score. The following is the structure with the highest score.

-391.733
#,|0; #,|1; 0,1,|2; 2,|3; 0,1,|4; 0,1,|5; 4,5,|6; 2,6,|7;
zgong001
 
Posts: 463
Joined: Thu Nov 16, 2017 11:10 am

Re: Scores of different parents sets in a giving order

Postby zgong001 » Tue Mar 13, 2018 4:49 pm

The following are structures with best scores.


-391.733 #,|0; #,|1; 0,1,|2; 2,|3; 0,1,|4; 0,1,|5; 4,5,|6; 2,6,|7;

-392.161 #,|0; #,|1; 1,|2; 2,|3; 0,1,|4; 0,1,|5; 4,5,|6; 2,6,|7;

-392.809 #,|0; #,|1; 0,1,|2; 1,2,|3; 0,1,|4; 0,1,|5; 4,5,|6; 2,6,|7;

-392.824 #,|0; #,|1; 0,1,|2; 2,|3; 0,1,|4; 0,1,|5; 4,5,|6; 6,|7;

-393.738 #,|0; #,|1; 0,1,|2; 2,|3; 0,1,|4; 0,1,2,|5; 4,5,|6; 2,6,|7;

-393.948 #,|0; 0,|1; 0,1,|2; 2,|3; 0,1,|4; 0,1,|5; 4,5,|6; 2,6,|7;

-394.265 #,|0; #,|1; 0,1,|2; 2,|3; 0,2,|4; 0,1,|5; 4,5,|6; 2,6,|7;

-395.976 #,|0; #,|1; 0,1,|2; 2,|3; 0,1,|4; 0,1,|5; 1,4,5,|6; 2,6,|7;
zgong001
 
Posts: 463
Joined: Thu Nov 16, 2017 11:10 am

Re: Scores of different parents sets in a giving order

Postby zgong001 » Thu Mar 15, 2018 5:02 pm

Here I was trying to get a structure sets which is 90% or 99% highest score in the whole list. I did a test.

When I added the second highest one, the percentage is 65.656%. Suppose the order is A, B, C, D, E, F, G
-391.74 = log( P(A) + P(B))
0.65656

When I added the third highest one, the percentage is 74.725%.
-391.449 = log( P(A) + P(B) + P(C))
0.74725

When I added the 4th highest one, the percentage is 90.7962%.
-391.352 = log( P(A) + P(B) + P(C) + P(D))
0.907962

When I added the 5th highest one, the percentage is 93.0604%.
-391.28 = log( P(A) + P(B) + P(C) + P(D) + P(E))
0.930604

When I added the 6th highest one, the percentage is 95.1892%.
-391.231 = log( P(A) + P(B) + P(C) + P(D) + P(E) + P(F))
0.951892

When I added the third highest one, the percentage is 99.138%.
-391.222 = log( P(A) + P(B) + P(C) + P(D) + P(E) + P(F) +P(G))
0.99138

If I want to achieve 99.99%, I need add more structures to the list.
zgong001
 
Posts: 463
Joined: Thu Nov 16, 2017 11:10 am

Re: Scores of different parents sets in a giving order

Postby zgong001 » Fri Mar 30, 2018 10:16 am

The following are the best several structure:

#,|0 #,|0 #,|0 #,|0 #,|0 #,|0
#,|1 #,|1 #,|1 #,|1 #,|1 #,|1
0,1,|2 1,|2 0,1,|2 0,1,|2 0,1,|2 0,1,|2
2,|3 2,|3 1,2,|3 2,|3 2,|3 2,|3
0,1,|4 0,1,|4 0,1,|4 0,1,|4 0,1,|4 0,1,|4
0,1,|5 0,1,|5 0,1,|5 0,1,|5 0,1,2,|5 0,1,|5
4,5,|6 4,5,|6 4,5,|6 4,5,|6 4,5,|6 4,5,|6
2,6,|7 2,6,|7 2,6,|7 6,|7 2,6,|7 3,6,|7
-391.7331 -392.1608 -392.8087 -392.8239 -393.7379 -392.8239
zgong001
 
Posts: 463
Joined: Thu Nov 16, 2017 11:10 am

Re: Scores of different parents sets in a giving order

Postby zgong001 » Fri Mar 30, 2018 5:08 pm

I updated the best structures with good format and the percentage.
Attachments
Best Structures.xlsx
(5.25 KiB) Downloaded 153 times
zgong001
 
Posts: 463
Joined: Thu Nov 16, 2017 11:10 am

Re: Scores of different parents sets in a giving order

Postby zgong001 » Thu Apr 05, 2018 8:50 am

The following is the best structures based on that user specified 99.9%.

Best several structures are:
-391.733 : [0] [1] [2|0:1] [3|2] [4|0:1] [5|0:1] [6|4:5] [7|2:6]
-392.161 : [0][1][2|1][3|2][4|0:1][5|0:1][6|4:5][7|2:6]
-392.809 : [0][1][2|0:1][3|1:2][4|0:1][5|0:1][6|4:5][7|2:6]
-392.824 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|6]
-393.738 : [0][1][2|0:1][3|2][4|0:1][5|0:1:2][6|4:5][7|2:6]
-393.936 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|3:6]
-393.936 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|4:6]
-393.948 : [0][1|0][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|2:6]
-394.265 : [0][1][2|0:1][3|2][4|0:2][5|0:1][6|4:5][7|2:6]
-394.546 : [0][1][2|0:1][3|2][4|0:1][5|0:2][6|4:5][7|2:6]
-394.769 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|2:4:6]
-394.777 : [0][1][2|0:1][3|2][4|0:1][5|0:1:3][6|4:5][7|2:6]
-395.976 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|1:4:5][7|2:6]
-396.027 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|1:6]
-396.059 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|2:4:5][7|2:6]
-396.366 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|3:4:5][7|2:6]
-396.38 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|3:4:6]
-396.397 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|1:2:6]
-396.404 : [0][1][2|0:1][3|0:2][4|0:1][5|0:1][6|4:5][7|2:6]
-396.575 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|0:6]
-396.598 : [0][1][2|0:1][3|2][4|0:1:2][5|0:1][6|4:5][7|2:6]
-396.748 : [0][1][2|0:1][3|2][4|0:1][5|0:1:4][6|4:5][7|2:6]
-396.833 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|2:5:6]
-397.039 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|0:4:5][7|2:6]
-397.065 : [0][1][2|0:1][3|2][4|0:1][5|0:1:2:3][6|4:5][7|2:6]
-397.356 : [0][1][2|0:1][3|2][4|0:1][5|0:1][6|4:5][7|2:3:6]
-397.663 : [0][1][2|0:1][3|2][4|0:1][5|0:2:3][6|4:5][7|2:6]
-397.688 : [0][1][2|0:1][3|2][4|0:1][5|2:4][6|4:5][7|2:6]
-397.821 : [0][1][2|0:1][3|2][4|0:1][5|1:4][6|4:5][7|2:6]
-398.32 : [0][1][2|0:1][3|2][4|0:2:3][5|0:1][6|4:5][7|2:6]
zgong001
 
Posts: 463
Joined: Thu Nov 16, 2017 11:10 am

Next

Return to Learning Conditional Independence Distributions

Who is online

Users browsing this forum: No registered users and 1 guest