Rclean.R
4.57 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#Libraries required to run the code
library(MASS)
library(pryr)
library(dplyr)
library(tidyr)
library(readr)
library(stringr)
#Necessary Functions
#1#Function for handling the changing of row names and column names
chngrownm <- function(mat){
row <- dim(mat)[1]
col <- dim(mat)[2]
j <- 1
x <- 1
p <- 1
a <- 1
b <- 1
g <- 1
for(j in 1:col){
if("!Sample_source_name_ch1"==mat[1,j]){
colnames(mat)[j] <- "Brain_Region"
}
if("!Sample_title" == mat[1,j]){
colnames(mat)[j] <- "Title"
}
if("!Sample_geo_accession" == mat[1,j]){
colnames(mat)[j] <- "ID_REF"
} else{
if(grepl("Sex|gender|Gender|sex",mat[2,j])==TRUE){
colnames(mat)[j] <- paste0("Sex",x)
x = x + 1
}
if(grepl("postmorteminterval|PMI|pmi",mat[2,j])==TRUE){
colnames(mat)[j] <- paste0("PMI",p)
p = p + 1
}
if(grepl("age|Age|AGE",mat[2,j])==TRUE){
colnames(mat)[j] <- paste0("Age",a)
a = a + 1
}
if(grepl("braak|b&b",mat[2,j])==TRUE){
colnames(mat)[j] <- paste0("Braak",b)
b = b + 1
}
if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control",mat[2,j])==TRUE){
colnames(mat)[j] <- paste0("Group",g)
g = g + 1
}
}
j = j + 1
}
mat
}
#2#Function for reorganizing information within the columns
cinfo <- function(mat){
col <- dim(mat)[2]
j <-2
for(j in 2:col){
if(grepl("Group",colnames(mat)[j]) == TRUE){
mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j])
}
if(grepl("Age",colnames(mat)[j])==TRUE){
mat[,j] <- gsub("\\D","",mat[,j])%>%
as.integer()
}
if(grepl("Sex",colnames(mat)[j])==TRUE){
mat[,j] <- gsub(".+:\\s","",mat[,j])
}
if(grepl("PMI",colnames(mat)[j])==TRUE){
mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>%
as.numeric()
}
if(grepl("Braak",colnames(mat)[j])==TRUE){
mat[,j]<-gsub(".+:\\s","",mat[,j])%>%
as.roman()%>%
as.integer()
}
j=j+1
}
mat
}
#3#Function for changing the gene ID to gene name
cgeneID <- function(GeneName,DATA){
colGene <- dim(GeneName)[2]
j <- 1
for(j in 1:colGene){
chngsreq <- grep(GeneName[1,j],DATA[1,])
DATA[1,chngsreq] <- gsub(GeneName[1,j],GeneName[2,j],DATA[1,chngsreq])
j = j+1
}
DATA
}
#4#Function for adjusting the gene names
gcnames <- function(DiData,usecol=1){
nuruns <- dim(DiData)[2]
i = 1
nwnam <- rep("0",length.out=nuruns)
for(i in 1:nuruns){
if(length(strsplit(colnames(DiData)[i],"///")[[1]]) >= usecol){
nwnam[i]=strsplit(colnames(DiData)[i],"///")[[1]][usecol]
} else{
nwnam[i]=strsplit(colnames(DiData)[i],"///")[[1]][1]
}
}
nwnam
}
#The Rest of this code will be used every time you want to change a data set
#Getting the series matrix file
print("Choose the series matrix file that you want to Analyze")
alz <- file.choose()
#Getting the GPL file
print("Choose the GPL file that correlates with the above series matrix file")
genena <- file.choose()
#Set working directory based on the directory of the series matrix file
##strsplit(alz,"[\\]") %>%
## .[[1]] %>%
## .[-length(.)] %>%
## paste(.,collapse="/") %>%
## setwd()
#Working with the wordy part of the document
alzword <- alz %>%
read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>%
filter(grepl("!Sample",X1))%>%
filter(!grepl("!Sample_contact",X1))
##Changing row names and column names:
ALZWORD <- t(alzword)
rownames(ALZWORD)=NULL
colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE)
ALZWORD <- chngrownm(ALZWORD)[-1,]
ALZWORD <- ALZWORD%>%
as.data.frame()%>%
dplyr::select(-starts_with("col"))
##Reorganizing information within the columns
ALZWORDF <- cinfo(ALZWORD)
#Working with Actual Data part of file
alzdat <- alz %>%
read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1)
ALZDAT <- t(alzdat[,-1])
rownames(ALZDAT)=NULL
##Gene ID to Gene Name
geneIDNam <- genena %>%
read_delim(delim="\t",comment = "#")%>%
dplyr::select(.,ID,grep("Symbol|ORF",colnames(.)))
##Changing the ID to a Name
ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat))
colnames(ALZDAT) = ALZDAT1[1,]
##Adjusting the column names aka the gene names
colnames(ALZDAT) <- gcnames(ALZDAT)
#Full Data
Fullalzdw <- ALZDAT %>%
as.data.frame() %>%
cbind(ALZWORDF,.)
##since the order in which the packages are added matters I moved this package to the top
##library(MASS)
nfna <- strsplit(alz,"[\\]") %>%
.[[1]] %>%
.[length(.)] %>%
gsub("\\D","",.) %>%
c("GSE",.,"after.txt") %>%
paste(collapse = "")
MASS::write.matrix(Fullalzdw,file = nfna,sep = "\t")
#Perfect for excel viewing
nfnaex <- strsplit(alz,"[\\]") %>%
.[[1]] %>%
.[length(.)] %>%
gsub("\\D","",.) %>%
c("GSE",.,"aftexcel.txt") %>%
paste(collapse = "")
write.table(t(Fullalzdw), file = nfnaex, sep = "\t")