Commit 1ac191ee2b1395744077403f9ffb6b06e51dcf38
1 parent
24ce5ef2bd
Exists in
master
Update
Showing
1 changed file
with
7 additions
and
8 deletions
Show diff stats
RAutoClDs.R
1 | |||
2 | #Efrain H. Gonzalez | 1 | #Efrain H. Gonzalez |
3 | #6/22/2017 | 2 | #6/25/2018 |
4 | options(digits = 11) | 3 | options(digits = 11) |
5 | #Libraries required to run the code | 4 | #Libraries required to run the code |
6 | library(pryr) | 5 | library(pryr) |
7 | library(MASS) | 6 | library(MASS) |
8 | library(dplyr) | 7 | library(dplyr) |
9 | library(tidyr) | 8 | library(tidyr) |
10 | library(readr) | 9 | library(readr) |
11 | library(stringr) | 10 | library(stringr) |
12 | 11 | ||
13 | 12 | ||
14 | #Necessary Functions | 13 | #Necessary Functions |
15 | #1#Function for handling the changing of row names and column names | 14 | #1#Function for handling the changing of row names and column names |
16 | chngrownm <- function(mat){ | 15 | chngrownm <- function(mat){ |
17 | row <- dim(mat)[1] | 16 | row <- dim(mat)[1] |
18 | col <- dim(mat)[2] | 17 | col <- dim(mat)[2] |
19 | e <- 1 | 18 | e <- 1 |
20 | r <- 1 | 19 | r <- 1 |
21 | a <- 1 | 20 | a <- 1 |
22 | h <- 1 | 21 | h <- 1 |
23 | g <- 1 | 22 | g <- 1 |
24 | o <- 1 | 23 | o <- 1 |
25 | for(e in 1:col){ | 24 | for(e in 1:col){ |
26 | if("!Sample_source_name_ch1"==mat[1,e]){ | 25 | if("!Sample_source_name_ch1"==mat[1,e]){ |
27 | colnames(mat)[e] <- "Brain_Region" | 26 | colnames(mat)[e] <- "Brain_Region" |
28 | } else if("!Sample_title" == mat[1,e]){ | 27 | } else if("!Sample_title" == mat[1,e]){ |
29 | colnames(mat)[e] <- "Title" | 28 | colnames(mat)[e] <- "Title" |
30 | } else if("!Sample_geo_accession" == mat[1,e]){ | 29 | } else if("!Sample_geo_accession" == mat[1,e]){ |
31 | colnames(mat)[e] <- "ID_REF" | 30 | colnames(mat)[e] <- "ID_REF" |
32 | } else{ | 31 | } else{ |
33 | if(grepl("Sex|gender|Gender|sex",mat[2,e])==TRUE){ | 32 | if(grepl("Sex|gender|Gender|sex",mat[2,e])==TRUE){ |
34 | colnames(mat)[e] <- paste0("Sex",r) | 33 | colnames(mat)[e] <- paste0("Sex",r) |
35 | r = r + 1 | 34 | r = r + 1 |
36 | } | 35 | } |
37 | if(grepl("postmorteminterval|PMI|pmi|interval",mat[2,e])==TRUE){ | 36 | if(grepl("postmorteminterval|PMI|pmi|interval",mat[2,e])==TRUE){ |
38 | colnames(mat)[e] <- paste0("PMI",a) | 37 | colnames(mat)[e] <- paste0("PMI",a) |
39 | a = a + 1 | 38 | a = a + 1 |
40 | } | 39 | } |
41 | if(grepl("age|Age|AGE",mat[2,e])==TRUE){ | 40 | if(grepl("age|Age|AGE",mat[2,e])==TRUE){ |
42 | colnames(mat)[e] <- paste0("Age",h) | 41 | colnames(mat)[e] <- paste0("Age",h) |
43 | h = h + 1 | 42 | h = h + 1 |
44 | } | 43 | } |
45 | if(grepl("braak|b&b",mat[2,e])==TRUE){ | 44 | if(grepl("braak|b&b",mat[2,e])==TRUE){ |
46 | colnames(mat)[e] <- paste0("Braak",g) | 45 | colnames(mat)[e] <- paste0("Braak",g) |
47 | g = g + 1 | 46 | g = g + 1 |
48 | } | 47 | } |
49 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,e])==TRUE){ | 48 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,e])==TRUE){ |
50 | colnames(mat)[e] <- paste0("Group",o) | 49 | colnames(mat)[e] <- paste0("Group",o) |
51 | o = o + 1 | 50 | o = o + 1 |
52 | } | 51 | } |
53 | 52 | ||
54 | } | 53 | } |
55 | e = e + 1 | 54 | e = e + 1 |
56 | } | 55 | } |
57 | mat | 56 | mat |
58 | } | 57 | } |
59 | 58 | ||
60 | #2#Function for reorganizing information within the columns | 59 | #2#Function for reorganizing information within the columns |
61 | cinfo <- function(mat){ | 60 | cinfo <- function(mat){ |
62 | col <- dim(mat)[2] | 61 | col <- dim(mat)[2] |
63 | j <-2 | 62 | j <-2 |
64 | for(j in 2:col){ | 63 | for(j in 2:col){ |
65 | if(grepl("Group",colnames(mat)[j]) == TRUE){ | 64 | if(grepl("Group",colnames(mat)[j]) == TRUE){ |
66 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) | 65 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) |
67 | } else if(grepl("Age",colnames(mat)[j])==TRUE){ | 66 | } else if(grepl("Age",colnames(mat)[j])==TRUE){ |
68 | mat[,j] <- gsub("\\D","",mat[,j])%>% | 67 | mat[,j] <- gsub("\\D","",mat[,j])%>% |
69 | as.integer() | 68 | as.integer() |
70 | } else if(grepl("Sex",colnames(mat)[j])==TRUE){ | 69 | } else if(grepl("Sex",colnames(mat)[j])==TRUE){ |
71 | mat[,j] <- gsub(".+:\\s","",mat[,j]) | 70 | mat[,j] <- gsub(".+:\\s","",mat[,j]) |
72 | } else if(grepl("PMI",colnames(mat)[j])==TRUE){ | 71 | } else if(grepl("PMI",colnames(mat)[j])==TRUE){ |
73 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% | 72 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% |
74 | as.numeric() | 73 | as.numeric() |
75 | } else if(grepl("Braak",colnames(mat)[j])==TRUE){ | 74 | } else if(grepl("Braak",colnames(mat)[j])==TRUE){ |
76 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% | 75 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% |
77 | as.roman()%>% | 76 | as.roman()%>% |
78 | as.integer() | 77 | as.integer() |
79 | } | 78 | } |
80 | j=j+1 | 79 | j=j+1 |
81 | } | 80 | } |
82 | mat | 81 | mat |
83 | } | 82 | } |
84 | 83 | ||
85 | #3#Function for labeling the gene IDs without names | 84 | #3#Function for labeling the gene IDs without names |
86 | NAFIXING <- function(GIDNAM){ | 85 | NAFIXING <- function(GIDNAM){ |
87 | row <- dim(GIDNAM)[1] | 86 | row <- dim(GIDNAM)[1] |
88 | i <- 1 | 87 | i <- 1 |
89 | for(i in 1:row){ | 88 | for(i in 1:row){ |
90 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ | 89 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ |
91 | GIDNAM[i,2] <- GIDNAM[i,1] | 90 | GIDNAM[i,2] <- GIDNAM[i,1] |
92 | } | 91 | } |
93 | i <- i + 1 | 92 | i <- i + 1 |
94 | } | 93 | } |
95 | GIDNAM | 94 | GIDNAM |
96 | } | 95 | } |
97 | 96 | ||
98 | #4#Function for changing the gene ID to gene name | 97 | #4#Function for changing the gene ID to gene name |
99 | cgeneID <- function(GeneName,DATA){ | 98 | cgeneID <- function(GeneName,DATA){ |
100 | nj <- t(GeneName) | 99 | nj <- t(GeneName) |
101 | nq <- t(DATA) | 100 | nq <- t(DATA) |
102 | colGene <- dim(nj)[2] | 101 | colGene <- dim(nj)[2] |
103 | colDATA <- dim(nq)[2] | 102 | colDATA <- dim(nq)[2] |
104 | j <- 1 | 103 | j <- 1 |
105 | for(j in 1:colDATA){ | 104 | for(j in 1:colDATA){ |
106 | #where is that gene id located within the GPL file | 105 | #where is that gene id located within the GPL file |
107 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) | 106 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) |
108 | if(is.na(sum(chngreq))==FALSE){ | 107 | if(is.na(sum(chngreq))==FALSE){ |
109 | if(sum(chngreq) > 0){ | 108 | if(sum(chngreq) > 0){ |
110 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) | 109 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) |
111 | } | 110 | } |
112 | } | 111 | } |
113 | j <- j + 1 | 112 | j <- j + 1 |
114 | } | 113 | } |
115 | nq | 114 | nq |
116 | } | 115 | } |
117 | #cgeneID <- function(GeneName,DATA){ | 116 | #cgeneID <- function(GeneName,DATA){ |
118 | # colGene <- dim(GeneName)[2] | 117 | # colGene <- dim(GeneName)[2] |
119 | # j <- 1 | 118 | # j <- 1 |
120 | # for(j in 1:colGene){ | 119 | # for(j in 1:colGene){ |
121 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) | 120 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) |
122 | # if(is.na(sum(chngsreq))==FALSE){ | 121 | # if(is.na(sum(chngsreq))==FALSE){ |
123 | # if(sum(chngsreq) > 0){ | 122 | # if(sum(chngsreq) > 0){ |
124 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) | 123 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) |
125 | # } | 124 | # } |
126 | # } | 125 | # } |
127 | # j = j+1 | 126 | # j = j+1 |
128 | # } | 127 | # } |
129 | # DATA | 128 | # DATA |
130 | #} | 129 | #} |
131 | 130 | ||
132 | #5#Function for adjusting the gene names | 131 | #5#Function for adjusting the gene names |
133 | gcnames <- function(DiData,usecol=1){ | 132 | gcnames <- function(DiData,usecol=1){ |
134 | nuruns <- dim(DiData)[2] | 133 | nuruns <- dim(DiData)[2] |
135 | i = 1 | 134 | i = 1 |
136 | nwnam <- rep("0",length.out=nuruns) | 135 | nwnam <- rep("0",length.out=nuruns) |
137 | for(i in 1:nuruns){ | 136 | for(i in 1:nuruns){ |
138 | if(length(strsplit(colnames(DiData)[i],"///|//")[[1]]) >= usecol){ | 137 | if(length(strsplit(colnames(DiData)[i],"///|//")[[1]]) >= usecol){ |
139 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][usecol]) | 138 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][usecol]) |
140 | } else{ | 139 | } else{ |
141 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][1]) | 140 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][1]) |
142 | } | 141 | } |
143 | 142 | ||
144 | } | 143 | } |
145 | nwnam | 144 | nwnam |
146 | 145 | ||
147 | } | 146 | } |
148 | 147 | ||
149 | #6# Function for discretizing the data | 148 | #6# Function for discretizing the data |
150 | dndat <- function(NDATA){ | 149 | dndat <- function(NDATA){ |
151 | rownd <- dim(NDATA)[1] | 150 | rownd <- dim(NDATA)[1] |
152 | colnd <- dim(NDATA)[2] | 151 | colnd <- dim(NDATA)[2] |
153 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) | 152 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) |
154 | colnames(DDATA) <- colnames(NDATA) | 153 | colnames(DDATA) <- colnames(NDATA) |
155 | i <- 1 | 154 | i <- 1 |
156 | for(i in 1:rownd){ | 155 | for(i in 1:rownd){ |
157 | j <- 1 | 156 | j <- 1 |
158 | for(j in 1:colnd){ | 157 | for(j in 1:colnd){ |
159 | if(is.na(NDATA[i,j])==FALSE){ | 158 | if(is.na(NDATA[i,j])==FALSE){ |
160 | 159 | ||
161 | if(NDATA[i,j] < -1){ | 160 | if(NDATA[i,j] < -1){ |
162 | DDATA[i,j]=0L | 161 | DDATA[i,j]=0L |
163 | } else if(NDATA[i,j] > 1){ | 162 | } else if(NDATA[i,j] > 1){ |
164 | DDATA[i,j]=2L | 163 | DDATA[i,j]=2L |
165 | } else if(-1 <= NDATA[i,j] && NDATA[i,j] <= 1){ | 164 | } else if(-1 <= NDATA[i,j] && NDATA[i,j] <= 1){ |
166 | DDATA[i,j]=1L | 165 | DDATA[i,j]=1L |
167 | } | 166 | } |
168 | } else{ | 167 | } else{ |
169 | DDATA[i,j] = NDATA[i,j] | 168 | DDATA[i,j] = NDATA[i,j] |
170 | } | 169 | } |
171 | j = j + 1 | 170 | j = j + 1 |
172 | } | 171 | } |
173 | i = i + 1 | 172 | i = i + 1 |
174 | } | 173 | } |
175 | DDATA | 174 | DDATA |
176 | } | 175 | } |
177 | 176 | ||
178 | 177 | ||
179 | #MajorFunction#This is the function that does everything else | 178 | #MajorFunction#This is the function that does everything else |
180 | THEFT <- function(){ | 179 | THEFT <- function(){ |
181 | #Set working directory based on the directory of the series matrix file Currently only works for windows | 180 | #Set working directory based on the directory of the series matrix file Currently only works for windows |
182 | wd <- getwd() | 181 | wd <- getwd() |
183 | #list.files() | 182 | #list.files() |
184 | #gsub("wd",wd,"Do you want to clean all data files in the directory wd?") | 183 | #gsub("wd",wd,"Do you want to clean all data files in the directory wd?") |
185 | numDAT <- switch(EXPR = menu(choices = c("Yes","No"),title = gsub("wd",wd,"Do you want to clean all data files in the directory wd?")) + 1,cat("Nothing done\n"),1L,2L) | 184 | numDAT <- switch(EXPR = menu(choices = c("Yes","No"),title = gsub("wd",wd,"Do you want to clean all data files in the directory wd?")) + 1,cat("Nothing done\n"),1L,2L) |
186 | GSEfileloc <- grep("^GSE.+\\.txt\\.gz$",list.files()) | 185 | GSEfileloc <- grep("^GSE.+\\.txt\\.gz$",list.files()) |
187 | GSEfloc <- list.files()[GSEfileloc] | 186 | GSEfloc <- list.files()[GSEfileloc] |
188 | #ALL DATA FILES WILL BE CLEANED | 187 | #ALL DATA FILES WILL BE CLEANED |
189 | if(numDAT == 1){ | 188 | if(numDAT == 1){ |
190 | #indexing the data files | 189 | #indexing the data files |
191 | n <- 1 | 190 | n <- 1 |
192 | for(n in 1: length(GSEfloc)){ | 191 | for(n in 1: length(GSEfloc)){ |
193 | alz <- GSEfloc[n] | 192 | alz <- GSEfloc[n] |
194 | 193 | ||
195 | #Working with the wordy part of the document | 194 | #Working with the wordy part of the document |
196 | alzword <- alz %>% | 195 | alzword <- alz %>% |
197 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 196 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
198 | filter(grepl("!Sample",X1))%>% | 197 | filter(grepl("!Sample",X1))%>% |
199 | filter(!grepl("!Sample_contact",X1)) | 198 | filter(!grepl("!Sample_contact",X1)) |
200 | 199 | ||
201 | #Getting the GPL file | 200 | #Getting the GPL file |
202 | genena <- grep("_platform_id",alzword$X1) %>% | 201 | genena <- grep("_platform_id",alzword$X1) %>% |
203 | alzword$X2[.] %>% | 202 | alzword$X2[.] %>% |
204 | str_trim(.) %>% | 203 | str_trim(.) %>% |
205 | paste0("^",.,"\\D") %>% | 204 | paste0("^",.,"\\D") %>% |
206 | grep(.,list.files()) %>% | 205 | grep(.,list.files()) %>% |
207 | list.files()[.] | 206 | list.files()[.] |
208 | 207 | ||
209 | #Find out if it is a soft GPL file or not | 208 | #Find out if it is a soft GPL file or not |
210 | soft <- strsplit(genena,"[\\|/]") %>% | 209 | soft <- strsplit(genena,"[\\|/]") %>% |
211 | .[[1]] %>% | 210 | .[[1]] %>% |
212 | .[length(.)] %>% | 211 | .[length(.)] %>% |
213 | grepl("soft",.) | 212 | grepl("soft",.) |
214 | 213 | ||
215 | ##Changing row names and column names: | 214 | ##Changing row names and column names: |
216 | ALZWORD <- t(alzword) | 215 | ALZWORD <- t(alzword) |
217 | rownames(ALZWORD)=NULL | 216 | rownames(ALZWORD)=NULL |
218 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 217 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
219 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 218 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
220 | ALZWORD <- ALZWORD%>% | 219 | ALZWORD <- ALZWORD%>% |
221 | as.data.frame(.,stringsAsFactors = FALSE)%>% | 220 | as.data.frame(.,stringsAsFactors = FALSE)%>% |
222 | dplyr::select(-starts_with("col")) | 221 | dplyr::select(-starts_with("col")) |
223 | 222 | ||
224 | ##Reorganizing information within the columns and final clinical data | 223 | ##Reorganizing information within the columns and final clinical data |
225 | ALZWORDF <- cinfo(ALZWORD) | 224 | ALZWORDF <- cinfo(ALZWORD) |
226 | 225 | ||
227 | 226 | ||
228 | #Working with Actual Data part of file | 227 | #Working with Actual Data part of file |
229 | alzdat <- alz %>% | 228 | alzdat <- alz %>% |
230 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 229 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
231 | ALZDAT <- t(alzdat[,-1]) | 230 | ALZDAT <- t(alzdat[,-1]) |
232 | rownames(ALZDAT)=NULL | 231 | rownames(ALZDAT)=NULL |
233 | 232 | ||
234 | ##Is there a clean version of the GPL file available? | 233 | ##Is there a clean version of the GPL file available? |
235 | gplnum <- strsplit(genena,"[\\|/]") %>% | 234 | gplnum <- strsplit(genena,"[\\|/]") %>% |
236 | .[[1]] %>% | 235 | .[[1]] %>% |
237 | .[length(.)] %>% | 236 | .[length(.)] %>% |
238 | gsub("\\D","",.) | 237 | gsub("\\D","",.) |
239 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 238 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
240 | if(clfileex >= 1){ | 239 | if(clfileex >= 1){ |
241 | #use the clean version | 240 | #use the clean version |
242 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 241 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
243 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 242 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
244 | 243 | ||
245 | } else if(clfileex == 0){ | 244 | } else if(clfileex == 0){ |
246 | ##Lets Create a clean version | 245 | ##Lets Create a clean version |
247 | 246 | ||
248 | ##Gene ID to Gene Name | 247 | ##Gene ID to Gene Name |
249 | if(soft == TRUE){ | 248 | if(soft == TRUE){ |
250 | #Check to see if there is already a file containing information on soft files | 249 | #Check to see if there is already a file containing information on soft files |
251 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 250 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
252 | if(fileex == 1){ | 251 | if(fileex == 1){ |
253 | #Check to see if this GPL soft file has been used before | 252 | #Check to see if this GPL soft file has been used before |
254 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 253 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
255 | .$GPL_FILE_NUM%>% | 254 | .$GPL_FILE_NUM%>% |
256 | grepl(gplnum,.) %>% | 255 | grepl(gplnum,.) %>% |
257 | sum() | 256 | sum() |
258 | if(IDF == 1){ | 257 | if(IDF == 1){ |
259 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 258 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
260 | .$GPL_FILE_NUM%>% | 259 | .$GPL_FILE_NUM%>% |
261 | grep(gplnum,.) | 260 | grep(gplnum,.) |
262 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 261 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
263 | .$LOC_ID %>% | 262 | .$LOC_ID %>% |
264 | .[IDLOCAL] | 263 | .[IDLOCAL] |
265 | geneIDNam <- genena %>% | 264 | geneIDNam <- genena %>% |
266 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 265 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
267 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) | 266 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
268 | } else if(IDF == 0){ | 267 | } else if(IDF == 0){ |
269 | #No information on this particular GPL file | 268 | #No information on this particular GPL file |
270 | idLOCGPL <- genena %>% | 269 | idLOCGPL <- genena %>% |
271 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 270 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
272 | t(.) %>% | 271 | t(.) %>% |
273 | grep("^ID\\s*$",.) %>% | 272 | grep("^ID\\s*$",.) %>% |
274 | -1 | 273 | -1 |
275 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 274 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
276 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 275 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
277 | geneIDNam <- genena %>% | 276 | geneIDNam <- genena %>% |
278 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 277 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
279 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) | 278 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
280 | } | 279 | } |
281 | } else if(fileex == 0){ | 280 | } else if(fileex == 0){ |
282 | #We must create a file that we can access for later use | 281 | #We must create a file that we can access for later use |
283 | idLOCGPL <- genena %>% | 282 | idLOCGPL <- genena %>% |
284 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 283 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
285 | t(.) %>% | 284 | t(.) %>% |
286 | grep("^ID\\s*$",.) %>% | 285 | grep("^ID\\s*$",.) %>% |
287 | -1 | 286 | -1 |
288 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 287 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
289 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 288 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
290 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 289 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
291 | geneIDNam <- genena %>% | 290 | geneIDNam <- genena %>% |
292 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 291 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
293 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) | 292 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
294 | } | 293 | } |
295 | } else if(soft == FALSE){ | 294 | } else if(soft == FALSE){ |
296 | geneIDNam <- genena %>% | 295 | geneIDNam <- genena %>% |
297 | read_delim(delim="\t",comment = "#")%>% | 296 | read_delim(delim="\t",comment = "#")%>% |
298 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) | 297 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
299 | } | 298 | } |
300 | 299 | ||
301 | ##Labeling the gene IDs without names | 300 | ##Labeling the gene IDs without names |
302 | geneIDNam <- NAFIXING(geneIDNam) | 301 | geneIDNam <- NAFIXING(geneIDNam) |
303 | 302 | ||
304 | ##remove the whitespace | 303 | ##remove the whitespace |
305 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 304 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
306 | 305 | ||
307 | ##Here is the clean version | 306 | ##Here is the clean version |
308 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 307 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
309 | } | 308 | } |
310 | 309 | ||
311 | 310 | ||
312 | 311 | ||
313 | ##Changing the gene ID to gene name | 312 | ##Changing the gene ID to gene name |
314 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) | 313 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) |
315 | colnames(ALZDAT) = ALZDAT1[1,] | 314 | colnames(ALZDAT) = ALZDAT1[1,] |
316 | 315 | ||
317 | 316 | ||
318 | ##Adjusting the column names aka the gene names | 317 | ##Adjusting the column names aka the gene names |
319 | colnames(ALZDAT) <- gcnames(ALZDAT) | 318 | colnames(ALZDAT) <- gcnames(ALZDAT) |
320 | 319 | ||
321 | 320 | ||
322 | #Full RAW Data | 321 | #Full RAW Data |
323 | Fullalzdwr <- ALZDAT %>% | 322 | Fullalzdwr <- ALZDAT %>% |
324 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 323 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
325 | cbind(ALZWORDF,.) | 324 | cbind(ALZWORDF,.) |
326 | 325 | ||
327 | #Raw file is output | 326 | #Raw file is output |
328 | nfnaex <- strsplit(alz,"[\\]") %>% | 327 | nfnaex <- strsplit(alz,"[\\|/]") %>% |
329 | .[[1]] %>% | 328 | .[[1]] %>% |
330 | .[length(.)] %>% | 329 | .[length(.)] %>% |
331 | gsub("\\D","",.) %>% | 330 | gsub("\\D","",.) %>% |
332 | c("GSE",.,"aftexcel.txt") %>% | 331 | c("GSE",.,"aftexcel.txt") %>% |
333 | paste(collapse = "") | 332 | paste(collapse = "") |
334 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 333 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
335 | 334 | ||
336 | 335 | ||
337 | 336 | ||
338 | #Now for the discretization part | 337 | #Now for the discretization part |
339 | ##get the wordy part again | 338 | ##get the wordy part again |
340 | rawword <- t(ALZWORDF) | 339 | rawword <- t(ALZWORDF) |
341 | 340 | ||
342 | ##where is ID_REF located | 341 | ##where is ID_REF located |
343 | hereim <- grep("ID_REF",rownames(rawword)) | 342 | hereim <- grep("ID_REF",rownames(rawword)) |
344 | 343 | ||
345 | ##Subject Names GSM... | 344 | ##Subject Names GSM... |
346 | subjnam <- rawword[hereim,] | 345 | subjnam <- rawword[hereim,] |
347 | 346 | ||
348 | ##Getting the names for the rows | 347 | ##Getting the names for the rows |
349 | namedarows <- rownames(rawword)[-hereim] %>% | 348 | namedarows <- rownames(rawword)[-hereim] %>% |
350 | as.data.frame(.,stringsAsFactors = FALSE) | 349 | as.data.frame(.,stringsAsFactors = FALSE) |
351 | RAWWORD <- rawword[-hereim,] %>% | 350 | RAWWORD <- rawword[-hereim,] %>% |
352 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 351 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
353 | bind_cols(namedarows,.) | 352 | bind_cols(namedarows,.) |
354 | z <- 1 | 353 | z <- 1 |
355 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 354 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
356 | for(z in 1:dim(RAWWORD)[1]){ | 355 | for(z in 1:dim(RAWWORD)[1]){ |
357 | if(sum(is.na(RAWWORD[z,])) > 0){ | 356 | if(sum(is.na(RAWWORD[z,])) > 0){ |
358 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 357 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
359 | } | 358 | } |
360 | if(length(grep("NA",RAWWORD[z,])) > 0){ | 359 | if(length(grep("NA",RAWWORD[z,])) > 0){ |
361 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] | 360 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] |
362 | } | 361 | } |
363 | z <- z + 1 | 362 | z <- z + 1 |
364 | } | 363 | } |
365 | 364 | ||
366 | colnames(naroww) <- "ROW_NAs" | 365 | colnames(naroww) <- "ROW_NAs" |
367 | RAWWORD <- bind_cols(RAWWORD,naroww) | 366 | RAWWORD <- bind_cols(RAWWORD,naroww) |
368 | 367 | ||
369 | 368 | ||
370 | roALZna <- t(ALZDAT) %>% | 369 | roALZna <- t(ALZDAT) %>% |
371 | rownames(.) %>% | 370 | rownames(.) %>% |
372 | as.data.frame(.,stringsAsFactors = FALSE) | 371 | as.data.frame(.,stringsAsFactors = FALSE) |
373 | colnames(roALZna) <- "ID_REF" | 372 | colnames(roALZna) <- "ID_REF" |
374 | 373 | ||
375 | RAWDAT <- t(ALZDAT) %>% | 374 | RAWDAT <- t(ALZDAT) %>% |
376 | as.data.frame(.,stringsAsFactors = FALSE) | 375 | as.data.frame(.,stringsAsFactors = FALSE) |
377 | colnames(RAWDAT) <- NULL | 376 | colnames(RAWDAT) <- NULL |
378 | rownames(RAWDAT) <- NULL | 377 | rownames(RAWDAT) <- NULL |
379 | 378 | ||
380 | RAWDAT2 <- RAWDAT %>% | 379 | RAWDAT2 <- RAWDAT %>% |
381 | cbind(roALZna,.) %>% | 380 | cbind(roALZna,.) %>% |
382 | dplyr::arrange(.,ID_REF) | 381 | dplyr::arrange(.,ID_REF) |
383 | 382 | ||
384 | ##Editing the file for R processing | 383 | ##Editing the file for R processing |
385 | RAWDATID <- RAWDAT2[,1] %>% | 384 | RAWDATID <- RAWDAT2[,1] %>% |
386 | as.matrix(.) | 385 | as.matrix(.) |
387 | 386 | ||
388 | RAWDATNUM <- RAWDAT2[,-1] %>% | 387 | RAWDATNUM <- RAWDAT2[,-1] %>% |
389 | mapply(.,FUN = as.numeric) %>% | 388 | mapply(.,FUN = as.numeric) %>% |
390 | t(.) | 389 | t(.) |
391 | 390 | ||
392 | ##Consolidating genes with the same name | 391 | ##Consolidating genes with the same name |
393 | ###create empty matrix of size equal to tabRDATID | 392 | ###create empty matrix of size equal to tabRDATID |
394 | tabRDATID <- table(RAWDATID) | 393 | tabRDATID <- table(RAWDATID) |
395 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 394 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
396 | j <- 1 | 395 | j <- 1 |
397 | for(j in 1:length(tabRDATID)){ | 396 | for(j in 1:length(tabRDATID)){ |
398 | ##Putting the ones without duplicates in their new homes | 397 | ##Putting the ones without duplicates in their new homes |
399 | if(tabRDATID[j] == 1){ | 398 | if(tabRDATID[j] == 1){ |
400 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 399 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
401 | } else if(tabRDATID[j] > 1){ | 400 | } else if(tabRDATID[j] > 1){ |
402 | ##Averaging duplicates and putting them in their new homes | 401 | ##Averaging duplicates and putting them in their new homes |
403 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 402 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
404 | } | 403 | } |
405 | j <- j + 1 | 404 | j <- j + 1 |
406 | } | 405 | } |
407 | 406 | ||
408 | 407 | ||
409 | ##Outputting non Z-score Average over genes | 408 | ##Outputting non Z-score Average over genes |
410 | newoutput <-NuRDATN | 409 | newoutput <-NuRDATN |
411 | colnames(newoutput) <- rownames(tabRDATID) | 410 | colnames(newoutput) <- rownames(tabRDATID) |
412 | nfnewout <- strsplit(alz,"[\\]") %>% | 411 | nfnewout <- strsplit(alz,"[\\|/]") %>% |
413 | .[[1]] %>% | 412 | .[[1]] %>% |
414 | .[length(.)] %>% | 413 | .[length(.)] %>% |
415 | gsub("\\D","",.) %>% | 414 | gsub("\\D","",.) %>% |
416 | c("GSE",.,"avg.txt") %>% | 415 | c("GSE",.,"avg.txt") %>% |
417 | paste(collapse = "") | 416 | paste(collapse = "") |
418 | noutput <- newoutput %>% | 417 | noutput <- newoutput %>% |
419 | t()%>% | 418 | t()%>% |
420 | as.data.frame(.,stringsAsFactors = FALSE) | 419 | as.data.frame(.,stringsAsFactors = FALSE) |
421 | noutput <- cbind(rownames(noutput),noutput) | 420 | noutput <- cbind(rownames(noutput),noutput) |
422 | colnames(noutput) <- c("Gene Symbol",subjnam) | 421 | colnames(noutput) <- c("Gene Symbol",subjnam) |
423 | rownames(noutput) <- NULL | 422 | rownames(noutput) <- NULL |
424 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) | 423 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) |
425 | 424 | ||
426 | 425 | ||
427 | ##Scaling the Data | 426 | ##Scaling the Data |
428 | scrawdat <- NuRDATN%>% | 427 | scrawdat <- NuRDATN%>% |
429 | scale() | 428 | scale() |
430 | attr(scrawdat,"scaled:center") <- NULL | 429 | attr(scrawdat,"scaled:center") <- NULL |
431 | attr(scrawdat,"scaled:scale") <- NULL | 430 | attr(scrawdat,"scaled:scale") <- NULL |
432 | colnames(scrawdat) <- rownames(tabRDATID) | 431 | colnames(scrawdat) <- rownames(tabRDATID) |
433 | 432 | ||
434 | #Outputting the Z-score file | 433 | #Outputting the Z-score file |
435 | nfnzsc <- strsplit(alz,"[\\]") %>% | 434 | nfnzsc <- strsplit(alz,"[\\|/]") %>% |
436 | .[[1]] %>% | 435 | .[[1]] %>% |
437 | .[length(.)] %>% | 436 | .[length(.)] %>% |
438 | gsub("\\D","",.) %>% | 437 | gsub("\\D","",.) %>% |
439 | c("GSE",.,"zscore.txt") %>% | 438 | c("GSE",.,"zscore.txt") %>% |
440 | paste(collapse = "") | 439 | paste(collapse = "") |
441 | zscraw <- scrawdat %>% | 440 | zscraw <- scrawdat %>% |
442 | t()%>% | 441 | t()%>% |
443 | as.data.frame(.,stringsAsFactors = FALSE) | 442 | as.data.frame(.,stringsAsFactors = FALSE) |
444 | zscraw <- cbind(rownames(zscraw),zscraw) | 443 | zscraw <- cbind(rownames(zscraw),zscraw) |
445 | colnames(zscraw) <- c("Gene Symbol",subjnam) | 444 | colnames(zscraw) <- c("Gene Symbol",subjnam) |
446 | rownames(zscraw) <- NULL | 445 | rownames(zscraw) <- NULL |
447 | write.table(zscraw, file = nfnzsc, sep = "\t",col.names = TRUE,row.names = FALSE) | 446 | write.table(zscraw, file = nfnzsc, sep = "\t",col.names = TRUE,row.names = FALSE) |
448 | 447 | ||
449 | 448 | ||
450 | ##Discretized the Data | 449 | ##Discretized the Data |
451 | dialzdat <- scrawdat %>% | 450 | dialzdat <- scrawdat %>% |
452 | dndat(.) %>% | 451 | dndat(.) %>% |
453 | t()%>% | 452 | t()%>% |
454 | as.data.frame(.,stringsAsFactors = FALSE) | 453 | as.data.frame(.,stringsAsFactors = FALSE) |
455 | colnames(dialzdat) <- rownames(RAWDATNUM) | 454 | colnames(dialzdat) <- rownames(RAWDATNUM) |
456 | 455 | ||
457 | ##setting "ID_REF" as a new variable | 456 | ##setting "ID_REF" as a new variable |
458 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) | 457 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) |
459 | colnames(geneNAM) <- "ID_REF" | 458 | colnames(geneNAM) <- "ID_REF" |
460 | rownames(dialzdat) <- NULL | 459 | rownames(dialzdat) <- NULL |
461 | dialzdat <-bind_cols(geneNAM,dialzdat) | 460 | dialzdat <-bind_cols(geneNAM,dialzdat) |
462 | 461 | ||
463 | ##NAs in a column | 462 | ##NAs in a column |
464 | x <- 2 | 463 | x <- 2 |
465 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 464 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
466 | nacol[1,1] = "COL_NAs" | 465 | nacol[1,1] = "COL_NAs" |
467 | for(x in 2:dim(dialzdat)[2]){ | 466 | for(x in 2:dim(dialzdat)[2]){ |
468 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 467 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
469 | x <- x + 1 | 468 | x <- x + 1 |
470 | } | 469 | } |
471 | colnames(nacol) <- colnames(dialzdat) | 470 | colnames(nacol) <- colnames(dialzdat) |
472 | dialzdat <- bind_rows(dialzdat,nacol) | 471 | dialzdat <- bind_rows(dialzdat,nacol) |
473 | 472 | ||
474 | ##NAs in a row | 473 | ##NAs in a row |
475 | y <- 1 | 474 | y <- 1 |
476 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 475 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
477 | for(y in 1:dim(dialzdat)[1]){ | 476 | for(y in 1:dim(dialzdat)[1]){ |
478 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 477 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
479 | y <- y + 1 | 478 | y <- y + 1 |
480 | } | 479 | } |
481 | colnames(narowd) <- "ROW_NAs" | 480 | colnames(narowd) <- "ROW_NAs" |
482 | dialzdat <- bind_cols(dialzdat,narowd) | 481 | dialzdat <- bind_cols(dialzdat,narowd) |
483 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 482 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
484 | colnames(RAWWORD) <- colnames(dialzdat) | 483 | colnames(RAWWORD) <- colnames(dialzdat) |
485 | ##converting to character so that the clinical can be brought together with discrete data | 484 | ##converting to character so that the clinical can be brought together with discrete data |
486 | k <- 2 | 485 | k <- 2 |
487 | for(k in 2:dim(dialzdat)[2]-1){ | 486 | for(k in 2:dim(dialzdat)[2]-1){ |
488 | dialzdat[,k] <- as.character(dialzdat[,k]) | 487 | dialzdat[,k] <- as.character(dialzdat[,k]) |
489 | k <- k + 1 | 488 | k <- k + 1 |
490 | } | 489 | } |
491 | #The End the full data | 490 | #The End the full data |
492 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 491 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
493 | 492 | ||
494 | #Produces Discrete file | 493 | #Produces Discrete file |
495 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 494 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
496 | .[[1]] %>% | 495 | .[[1]] %>% |
497 | .[length(.)] %>% | 496 | .[length(.)] %>% |
498 | gsub("\\D","",.) %>% | 497 | gsub("\\D","",.) %>% |
499 | c("GSE",.,"dscrt.txt") %>% | 498 | c("GSE",.,"dscrt.txt") %>% |
500 | paste(collapse = "") | 499 | paste(collapse = "") |
501 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 500 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
502 | n <- n +1 | 501 | n <- n +1 |
503 | } | 502 | } |
504 | } else if(numDAT == 2){ | 503 | } else if(numDAT == 2){ |
505 | #CHOOSE A DATA FILE TO CLEAN OR SEVERAL DATA FILES TO CLEAN | 504 | #CHOOSE A DATA FILE TO CLEAN OR SEVERAL DATA FILES TO CLEAN |
506 | 505 | ||
507 | #All the files you want to analyze | 506 | #All the files you want to analyze |
508 | ANDIS <- select.list(choices = list.files()[GSEfileloc],multiple = TRUE, title = "Choose the file/files you want to analyze:") | 507 | ANDIS <- select.list(choices = list.files()[GSEfileloc],multiple = TRUE, title = "Choose the file/files you want to analyze:") |
509 | if(length(ANDIS) == 0){ | 508 | if(length(ANDIS) == 0){ |
510 | #Spit out a warning | 509 | #Spit out a warning |
511 | warning("You did not select any files and so no cleaning will be performed") | 510 | warning("You did not select any files and so no cleaning will be performed") |
512 | } else{ | 511 | } else{ |
513 | #indexing the data files | 512 | #indexing the data files |
514 | n <- 1 | 513 | n <- 1 |
515 | for(n in 1: length(ANDIS)){ | 514 | for(n in 1: length(ANDIS)){ |
516 | alz <- ANDIS[n] | 515 | alz <- ANDIS[n] |
517 | 516 | ||
518 | #Working with the wordy part of the document | 517 | #Working with the wordy part of the document |
519 | alzword <- alz %>% | 518 | alzword <- alz %>% |
520 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 519 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
521 | filter(grepl("!Sample",X1))%>% | 520 | filter(grepl("!Sample",X1))%>% |
522 | filter(!grepl("!Sample_contact",X1)) | 521 | filter(!grepl("!Sample_contact",X1)) |
523 | 522 | ||
524 | #Getting the GPL file | 523 | #Getting the GPL file |
525 | genena <- grep("_platform_id",alzword$X1) %>% | 524 | genena <- grep("_platform_id",alzword$X1) %>% |
526 | alzword$X2[.] %>% | 525 | alzword$X2[.] %>% |
527 | str_trim(.) %>% | 526 | str_trim(.) %>% |
528 | paste0("^",.,"\\D") %>% | 527 | paste0("^",.,"\\D") %>% |
529 | grep(.,list.files()) %>% | 528 | grep(.,list.files()) %>% |
530 | list.files()[.] | 529 | list.files()[.] |
531 | 530 | ||
532 | #Find out if it is a soft GPL file or not | 531 | #Find out if it is a soft GPL file or not |
533 | soft <- strsplit(genena,"[\\|/]") %>% | 532 | soft <- strsplit(genena,"[\\|/]") %>% |
534 | .[[1]] %>% | 533 | .[[1]] %>% |
535 | .[length(.)] %>% | 534 | .[length(.)] %>% |
536 | grepl("soft",.) | 535 | grepl("soft",.) |
537 | 536 | ||
538 | ##Changing row names and column names: | 537 | ##Changing row names and column names: |
539 | ALZWORD <- t(alzword) | 538 | ALZWORD <- t(alzword) |
540 | rownames(ALZWORD)=NULL | 539 | rownames(ALZWORD)=NULL |
541 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 540 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
542 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 541 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
543 | ALZWORD <- ALZWORD%>% | 542 | ALZWORD <- ALZWORD%>% |
544 | as.data.frame(.,stringsAsFactors = FALSE)%>% | 543 | as.data.frame(.,stringsAsFactors = FALSE)%>% |
545 | dplyr::select(-starts_with("col")) | 544 | dplyr::select(-starts_with("col")) |
546 | 545 | ||
547 | ##Reorganizing information within the columns and final clinical data | 546 | ##Reorganizing information within the columns and final clinical data |
548 | ALZWORDF <- cinfo(ALZWORD) | 547 | ALZWORDF <- cinfo(ALZWORD) |
549 | 548 | ||
550 | 549 | ||
551 | #Working with Actual Data part of file | 550 | #Working with Actual Data part of file |
552 | alzdat <- alz %>% | 551 | alzdat <- alz %>% |
553 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 552 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
554 | ALZDAT <- t(alzdat[,-1]) | 553 | ALZDAT <- t(alzdat[,-1]) |
555 | rownames(ALZDAT)=NULL | 554 | rownames(ALZDAT)=NULL |
556 | 555 | ||
557 | ##Is there a clean version of the GPL file available? | 556 | ##Is there a clean version of the GPL file available? |
558 | gplnum <- strsplit(genena,"[\\|/]") %>% | 557 | gplnum <- strsplit(genena,"[\\|/]") %>% |
559 | .[[1]] %>% | 558 | .[[1]] %>% |
560 | .[length(.)] %>% | 559 | .[length(.)] %>% |
561 | gsub("\\D","",.) | 560 | gsub("\\D","",.) |
562 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 561 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
563 | if(clfileex >= 1){ | 562 | if(clfileex >= 1){ |
564 | #use the clean version | 563 | #use the clean version |
565 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 564 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
566 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 565 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
567 | 566 | ||
568 | } else if(clfileex == 0){ | 567 | } else if(clfileex == 0){ |
569 | ##Lets Create a clean version | 568 | ##Lets Create a clean version |
570 | 569 | ||
571 | ##Gene ID to Gene Name | 570 | ##Gene ID to Gene Name |
572 | if(soft == TRUE){ | 571 | if(soft == TRUE){ |
573 | #Check to see if there is already a file containing information on soft files | 572 | #Check to see if there is already a file containing information on soft files |
574 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 573 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
575 | if(fileex == 1){ | 574 | if(fileex == 1){ |
576 | #Check to see if this GPL soft file has been used before | 575 | #Check to see if this GPL soft file has been used before |
577 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 576 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
578 | .$GPL_FILE_NUM%>% | 577 | .$GPL_FILE_NUM%>% |
579 | grepl(gplnum,.) %>% | 578 | grepl(gplnum,.) %>% |
580 | sum() | 579 | sum() |
581 | if(IDF == 1){ | 580 | if(IDF == 1){ |
582 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 581 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
583 | .$GPL_FILE_NUM%>% | 582 | .$GPL_FILE_NUM%>% |
584 | grep(gplnum,.) | 583 | grep(gplnum,.) |
585 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 584 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
586 | .$LOC_ID %>% | 585 | .$LOC_ID %>% |
587 | .[IDLOCAL] | 586 | .[IDLOCAL] |
588 | geneIDNam <- genena %>% | 587 | geneIDNam <- genena %>% |
589 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 588 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
590 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) | 589 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
591 | } else if(IDF == 0){ | 590 | } else if(IDF == 0){ |
592 | #No information on this particular GPL file | 591 | #No information on this particular GPL file |
593 | idLOCGPL <- genena %>% | 592 | idLOCGPL <- genena %>% |
594 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 593 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
595 | t(.) %>% | 594 | t(.) %>% |
596 | grep("^ID\\s*$",.) %>% | 595 | grep("^ID\\s*$",.) %>% |
597 | -1 | 596 | -1 |
598 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 597 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
599 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 598 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
600 | geneIDNam <- genena %>% | 599 | geneIDNam <- genena %>% |
601 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 600 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
602 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) | 601 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
603 | } | 602 | } |
604 | } else if(fileex == 0){ | 603 | } else if(fileex == 0){ |
605 | #We must create a file that we can access for later use | 604 | #We must create a file that we can access for later use |
606 | idLOCGPL <- genena %>% | 605 | idLOCGPL <- genena %>% |
607 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 606 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
608 | t(.) %>% | 607 | t(.) %>% |
609 | grep("^ID\\s*$",.) %>% | 608 | grep("^ID\\s*$",.) %>% |
610 | -1 | 609 | -1 |
611 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 610 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
612 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 611 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
613 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 612 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
614 | geneIDNam <- genena %>% | 613 | geneIDNam <- genena %>% |
615 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 614 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
616 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) | 615 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
617 | } | 616 | } |
618 | } else if(soft == FALSE){ | 617 | } else if(soft == FALSE){ |
619 | geneIDNam <- genena %>% | 618 | geneIDNam <- genena %>% |
620 | read_delim(delim="\t",comment = "#")%>% | 619 | read_delim(delim="\t",comment = "#")%>% |
621 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) | 620 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
622 | } | 621 | } |
623 | 622 | ||
624 | ##Labeling the gene IDs without names | 623 | ##Labeling the gene IDs without names |
625 | geneIDNam <- NAFIXING(geneIDNam) | 624 | geneIDNam <- NAFIXING(geneIDNam) |
626 | 625 | ||
627 | ##remove the whitespace | 626 | ##remove the whitespace |
628 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 627 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
629 | 628 | ||
630 | ##Here is the clean version | 629 | ##Here is the clean version |
631 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 630 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
632 | } | 631 | } |
633 | 632 | ||
634 | 633 | ||
635 | 634 | ||
636 | ##Changing the gene ID to gene name | 635 | ##Changing the gene ID to gene name |
637 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) | 636 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) |
638 | colnames(ALZDAT) = ALZDAT1[1,] | 637 | colnames(ALZDAT) = ALZDAT1[1,] |
639 | 638 | ||
640 | 639 | ||
641 | ##Adjusting the column names aka the gene names | 640 | ##Adjusting the column names aka the gene names |
642 | colnames(ALZDAT) <- gcnames(ALZDAT) | 641 | colnames(ALZDAT) <- gcnames(ALZDAT) |
643 | 642 | ||
644 | 643 | ||
645 | #Full RAW Data | 644 | #Full RAW Data |
646 | Fullalzdwr <- ALZDAT %>% | 645 | Fullalzdwr <- ALZDAT %>% |
647 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 646 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
648 | cbind(ALZWORDF,.) | 647 | cbind(ALZWORDF,.) |
649 | 648 | ||
650 | #Raw file is output | 649 | #Raw file is output |
651 | nfnaex <- strsplit(alz,"[\\]") %>% | 650 | nfnaex <- strsplit(alz,"[\\|/]") %>% |
652 | .[[1]] %>% | 651 | .[[1]] %>% |
653 | .[length(.)] %>% | 652 | .[length(.)] %>% |
654 | gsub("\\D","",.) %>% | 653 | gsub("\\D","",.) %>% |
655 | c("GSE",.,"aftexcel.txt") %>% | 654 | c("GSE",.,"aftexcel.txt") %>% |
656 | paste(collapse = "") | 655 | paste(collapse = "") |
657 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 656 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
658 | 657 | ||
659 | 658 | ||
660 | 659 | ||
661 | #Now for the discretization part | 660 | #Now for the discretization part |
662 | ##get the wordy part again | 661 | ##get the wordy part again |
663 | rawword <- t(ALZWORDF) | 662 | rawword <- t(ALZWORDF) |
664 | 663 | ||
665 | ##where is ID_REF located | 664 | ##where is ID_REF located |
666 | hereim <- grep("ID_REF",rownames(rawword)) | 665 | hereim <- grep("ID_REF",rownames(rawword)) |
667 | 666 | ||
668 | ##Subject Names GSM... | 667 | ##Subject Names GSM... |
669 | subjnam <- rawword[hereim,] | 668 | subjnam <- rawword[hereim,] |
670 | 669 | ||
671 | ##Getting the names for the rows | 670 | ##Getting the names for the rows |
672 | namedarows <- rownames(rawword)[-hereim] %>% | 671 | namedarows <- rownames(rawword)[-hereim] %>% |
673 | as.data.frame(.,stringsAsFactors = FALSE) | 672 | as.data.frame(.,stringsAsFactors = FALSE) |
674 | RAWWORD <- rawword[-hereim,] %>% | 673 | RAWWORD <- rawword[-hereim,] %>% |
675 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 674 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
676 | bind_cols(namedarows,.) | 675 | bind_cols(namedarows,.) |
677 | z <- 1 | 676 | z <- 1 |
678 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 677 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
679 | for(z in 1:dim(RAWWORD)[1]){ | 678 | for(z in 1:dim(RAWWORD)[1]){ |
680 | if(sum(is.na(RAWWORD[z,])) > 0){ | 679 | if(sum(is.na(RAWWORD[z,])) > 0){ |
681 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 680 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
682 | } | 681 | } |
683 | if(length(grep("NA",RAWWORD[z,])) > 0){ | 682 | if(length(grep("NA",RAWWORD[z,])) > 0){ |
684 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] | 683 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] |
685 | } | 684 | } |
686 | z <- z + 1 | 685 | z <- z + 1 |
687 | } | 686 | } |
688 | 687 | ||
689 | colnames(naroww) <- "ROW_NAs" | 688 | colnames(naroww) <- "ROW_NAs" |
690 | RAWWORD <- bind_cols(RAWWORD,naroww) | 689 | RAWWORD <- bind_cols(RAWWORD,naroww) |
691 | 690 | ||
692 | 691 | ||
693 | roALZna <- t(ALZDAT) %>% | 692 | roALZna <- t(ALZDAT) %>% |
694 | rownames(.) %>% | 693 | rownames(.) %>% |
695 | as.data.frame(.,stringsAsFactors = FALSE) | 694 | as.data.frame(.,stringsAsFactors = FALSE) |
696 | colnames(roALZna) <- "ID_REF" | 695 | colnames(roALZna) <- "ID_REF" |
697 | 696 | ||
698 | RAWDAT <- t(ALZDAT) %>% | 697 | RAWDAT <- t(ALZDAT) %>% |
699 | as.data.frame(.,stringsAsFactors = FALSE) | 698 | as.data.frame(.,stringsAsFactors = FALSE) |
700 | colnames(RAWDAT) <- NULL | 699 | colnames(RAWDAT) <- NULL |
701 | rownames(RAWDAT) <- NULL | 700 | rownames(RAWDAT) <- NULL |
702 | 701 | ||
703 | RAWDAT2 <- RAWDAT %>% | 702 | RAWDAT2 <- RAWDAT %>% |
704 | cbind(roALZna,.) %>% | 703 | cbind(roALZna,.) %>% |
705 | dplyr::arrange(.,ID_REF) | 704 | dplyr::arrange(.,ID_REF) |
706 | 705 | ||
707 | ##Editing the file for R processing | 706 | ##Editing the file for R processing |
708 | RAWDATID <- RAWDAT2[,1] %>% | 707 | RAWDATID <- RAWDAT2[,1] %>% |
709 | as.matrix(.) | 708 | as.matrix(.) |
710 | 709 | ||
711 | RAWDATNUM <- RAWDAT2[,-1] %>% | 710 | RAWDATNUM <- RAWDAT2[,-1] %>% |
712 | mapply(.,FUN = as.numeric) %>% | 711 | mapply(.,FUN = as.numeric) %>% |
713 | t(.) | 712 | t(.) |
714 | 713 | ||
715 | ##Consolidating genes with the same name | 714 | ##Consolidating genes with the same name |
716 | ###create empty matrix of size equal to tabRDATID | 715 | ###create empty matrix of size equal to tabRDATID |
717 | tabRDATID <- table(RAWDATID) | 716 | tabRDATID <- table(RAWDATID) |
718 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 717 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
719 | j <- 1 | 718 | j <- 1 |
720 | for(j in 1:length(tabRDATID)){ | 719 | for(j in 1:length(tabRDATID)){ |
721 | ##Putting the ones without duplicates in their new homes | 720 | ##Putting the ones without duplicates in their new homes |
722 | if(tabRDATID[j] == 1){ | 721 | if(tabRDATID[j] == 1){ |
723 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 722 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
724 | } else if(tabRDATID[j] > 1){ | 723 | } else if(tabRDATID[j] > 1){ |
725 | ##Averaging duplicates and putting them in their new homes | 724 | ##Averaging duplicates and putting them in their new homes |
726 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 725 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
727 | } | 726 | } |
728 | j <- j + 1 | 727 | j <- j + 1 |
729 | } | 728 | } |
730 | 729 | ||
731 | ##Outputting non Z-score Average over genes | 730 | ##Outputting non Z-score Average over genes |
732 | newoutput <-NuRDATN | 731 | newoutput <-NuRDATN |
733 | colnames(newoutput) <- rownames(tabRDATID) | 732 | colnames(newoutput) <- rownames(tabRDATID) |
734 | nfnewout <- strsplit(alz,"[\\]") %>% | 733 | nfnewout <- strsplit(alz,"[\\|/]") %>% |
735 | .[[1]] %>% | 734 | .[[1]] %>% |
736 | .[length(.)] %>% | 735 | .[length(.)] %>% |
737 | gsub("\\D","",.) %>% | 736 | gsub("\\D","",.) %>% |
738 | c("GSE",.,"avg.txt") %>% | 737 | c("GSE",.,"avg.txt") %>% |
739 | paste(collapse = "") | 738 | paste(collapse = "") |
740 | noutput <- newoutput %>% | 739 | noutput <- newoutput %>% |
741 | t()%>% | 740 | t()%>% |
742 | as.data.frame(.,stringsAsFactors = FALSE) | 741 | as.data.frame(.,stringsAsFactors = FALSE) |
743 | noutput <- cbind(rownames(noutput),noutput) | 742 | noutput <- cbind(rownames(noutput),noutput) |
744 | colnames(noutput) <- c("Gene Symbol",subjnam) | 743 | colnames(noutput) <- c("Gene Symbol",subjnam) |
745 | rownames(noutput) <- NULL | 744 | rownames(noutput) <- NULL |
746 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) | 745 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) |
747 | 746 | ||
748 | 747 | ||
749 | ##Scaling the Data | 748 | ##Scaling the Data |
750 | scrawdat <- NuRDATN%>% | 749 | scrawdat <- NuRDATN%>% |
751 | scale() | 750 | scale() |
752 | attr(scrawdat,"scaled:center") <- NULL | 751 | attr(scrawdat,"scaled:center") <- NULL |
753 | attr(scrawdat,"scaled:scale") <- NULL | 752 | attr(scrawdat,"scaled:scale") <- NULL |
754 | colnames(scrawdat) <- rownames(tabRDATID) | 753 | colnames(scrawdat) <- rownames(tabRDATID) |
755 | 754 | ||
756 | #Outputting the Z-score file | 755 | #Outputting the Z-score file |
757 | nfnzsc <- strsplit(alz,"[\\]") %>% | 756 | nfnzsc <- strsplit(alz,"[\\|/]") %>% |
758 | .[[1]] %>% | 757 | .[[1]] %>% |
759 | .[length(.)] %>% | 758 | .[length(.)] %>% |
760 | gsub("\\D","",.) %>% | 759 | gsub("\\D","",.) %>% |
761 | c("GSE",.,"zscore.txt") %>% | 760 | c("GSE",.,"zscore.txt") %>% |
762 | paste(collapse = "") | 761 | paste(collapse = "") |
763 | zscraw <- scrawdat %>% | 762 | zscraw <- scrawdat %>% |
764 | t()%>% | 763 | t()%>% |
765 | as.data.frame(.,stringsAsFactors = FALSE) | 764 | as.data.frame(.,stringsAsFactors = FALSE) |
766 | zscraw <- cbind(rownames(zscraw),zscraw) | 765 | zscraw <- cbind(rownames(zscraw),zscraw) |
767 | colnames(zscraw) <- c("Gene Symbol",subjnam) | 766 | colnames(zscraw) <- c("Gene Symbol",subjnam) |
768 | rownames(zscraw) <- NULL | 767 | rownames(zscraw) <- NULL |
769 | write.table(zscraw, file = nfnzsc, sep = "\t",col.names = TRUE,row.names = FALSE) | 768 | write.table(zscraw, file = nfnzsc, sep = "\t",col.names = TRUE,row.names = FALSE) |
770 | 769 | ||
771 | ##Discretized the Data | 770 | ##Discretized the Data |
772 | dialzdat <- scrawdat %>% | 771 | dialzdat <- scrawdat %>% |
773 | dndat(.) %>% | 772 | dndat(.) %>% |
774 | t()%>% | 773 | t()%>% |
775 | as.data.frame(.,stringsAsFactors = FALSE) | 774 | as.data.frame(.,stringsAsFactors = FALSE) |
776 | colnames(dialzdat) <- rownames(RAWDATNUM) | 775 | colnames(dialzdat) <- rownames(RAWDATNUM) |
777 | 776 | ||
778 | ##setting "ID_REF" as a new variable | 777 | ##setting "ID_REF" as a new variable |
779 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) | 778 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) |
780 | colnames(geneNAM) <- "ID_REF" | 779 | colnames(geneNAM) <- "ID_REF" |
781 | rownames(dialzdat) <- NULL | 780 | rownames(dialzdat) <- NULL |
782 | dialzdat <-bind_cols(geneNAM,dialzdat) | 781 | dialzdat <-bind_cols(geneNAM,dialzdat) |
783 | 782 | ||
784 | ##NAs in a column | 783 | ##NAs in a column |
785 | x <- 2 | 784 | x <- 2 |
786 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 785 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
787 | nacol[1,1] = "COL_NAs" | 786 | nacol[1,1] = "COL_NAs" |
788 | for(x in 2:dim(dialzdat)[2]){ | 787 | for(x in 2:dim(dialzdat)[2]){ |
789 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 788 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
790 | x <- x + 1 | 789 | x <- x + 1 |
791 | } | 790 | } |
792 | colnames(nacol) <- colnames(dialzdat) | 791 | colnames(nacol) <- colnames(dialzdat) |
793 | dialzdat <- bind_rows(dialzdat,nacol) | 792 | dialzdat <- bind_rows(dialzdat,nacol) |
794 | 793 | ||
795 | ##NAs in a row | 794 | ##NAs in a row |
796 | y <- 1 | 795 | y <- 1 |
797 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 796 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
798 | for(y in 1:dim(dialzdat)[1]){ | 797 | for(y in 1:dim(dialzdat)[1]){ |
799 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 798 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
800 | y <- y + 1 | 799 | y <- y + 1 |
801 | } | 800 | } |
802 | colnames(narowd) <- "ROW_NAs" | 801 | colnames(narowd) <- "ROW_NAs" |
803 | dialzdat <- bind_cols(dialzdat,narowd) | 802 | dialzdat <- bind_cols(dialzdat,narowd) |
804 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 803 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
805 | colnames(RAWWORD) <- colnames(dialzdat) | 804 | colnames(RAWWORD) <- colnames(dialzdat) |
806 | ##converting to character so that the clinical can be brought together with discrete data | 805 | ##converting to character so that the clinical can be brought together with discrete data |
807 | k <- 2 | 806 | k <- 2 |
808 | for(k in 2:dim(dialzdat)[2]-1){ | 807 | for(k in 2:dim(dialzdat)[2]-1){ |
809 | dialzdat[,k] <- as.character(dialzdat[,k]) | 808 | dialzdat[,k] <- as.character(dialzdat[,k]) |
810 | k <- k + 1 | 809 | k <- k + 1 |
811 | } | 810 | } |
812 | #The End the full data | 811 | #The End the full data |
813 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 812 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
814 | 813 | ||
815 | #Produces Discrete file | 814 | #Produces Discrete file |
816 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 815 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
817 | .[[1]] %>% | 816 | .[[1]] %>% |
818 | .[length(.)] %>% | 817 | .[length(.)] %>% |
819 | gsub("\\D","",.) %>% | 818 | gsub("\\D","",.) %>% |
820 | c("GSE",.,"dscrt.txt") %>% | 819 | c("GSE",.,"dscrt.txt") %>% |
821 | paste(collapse = "") | 820 | paste(collapse = "") |
822 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 821 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
823 | 822 | ||
824 | 823 | ||
825 | n <- n + 1 | 824 | n <- n + 1 |
826 | } | 825 | } |
827 | } | 826 | } |
828 | } | 827 | } |
829 | } | 828 | } |
830 | #The Rest of this code will be used every time you want to change a data set | 829 | #The Rest of this code will be used every time you want to change a data set |
831 | THEFT() | 830 | THEFT() |