Commit 501231d3ebcc148491cc9f407215c4a8d1369b35
1 parent
48208ef1ad
Exists in
master
Added |^UCSC_RefGene_Name$ to list of potential names in GPL
Showing
1 changed file
with
4 additions
and
4 deletions
Show diff stats
RCleanDscret.R
1 | ##Posted 6/15/2017 | 1 | ##Posted 6/15/2017 |
2 | options(digits = 11) | 2 | options(digits = 11) |
3 | 3 | ||
4 | #Libraries required to run the code | 4 | #Libraries required to run the code |
5 | library(pryr) | 5 | library(pryr) |
6 | library(MASS) | 6 | library(MASS) |
7 | library(dplyr) | 7 | library(dplyr) |
8 | library(tidyr) | 8 | library(tidyr) |
9 | library(readr) | 9 | library(readr) |
10 | library(stringr) | 10 | library(stringr) |
11 | 11 | ||
12 | 12 | ||
13 | #Necessary Functions | 13 | #Necessary Functions |
14 | #1#Function for handling the changing of row names and column names | 14 | #1#Function for handling the changing of row names and column names |
15 | chngrownm <- function(mat){ | 15 | chngrownm <- function(mat){ |
16 | row <- dim(mat)[1] | 16 | row <- dim(mat)[1] |
17 | col <- dim(mat)[2] | 17 | col <- dim(mat)[2] |
18 | j <- 1 | 18 | j <- 1 |
19 | x <- 1 | 19 | x <- 1 |
20 | p <- 1 | 20 | p <- 1 |
21 | a <- 1 | 21 | a <- 1 |
22 | b <- 1 | 22 | b <- 1 |
23 | g <- 1 | 23 | g <- 1 |
24 | for(j in 1:col){ | 24 | for(j in 1:col){ |
25 | if("!Sample_source_name_ch1"==mat[1,j]){ | 25 | if("!Sample_source_name_ch1"==mat[1,j]){ |
26 | colnames(mat)[j] <- "Brain_Region" | 26 | colnames(mat)[j] <- "Brain_Region" |
27 | } else if("!Sample_title" == mat[1,j]){ | 27 | } else if("!Sample_title" == mat[1,j]){ |
28 | colnames(mat)[j] <- "Title" | 28 | colnames(mat)[j] <- "Title" |
29 | } else if("!Sample_geo_accession" == mat[1,j]){ | 29 | } else if("!Sample_geo_accession" == mat[1,j]){ |
30 | colnames(mat)[j] <- "ID_REF" | 30 | colnames(mat)[j] <- "ID_REF" |
31 | } else{ | 31 | } else{ |
32 | if(grepl("Sex|gender|Gender|sex",mat[2,j])==TRUE){ | 32 | if(grepl("Sex|gender|Gender|sex",mat[2,j])==TRUE){ |
33 | colnames(mat)[j] <- paste0("Sex",x) | 33 | colnames(mat)[j] <- paste0("Sex",x) |
34 | x = x + 1 | 34 | x = x + 1 |
35 | } | 35 | } |
36 | if(grepl("postmorteminterval|PMI|pmi",mat[2,j])==TRUE){ | 36 | if(grepl("postmorteminterval|PMI|pmi",mat[2,j])==TRUE){ |
37 | colnames(mat)[j] <- paste0("PMI",p) | 37 | colnames(mat)[j] <- paste0("PMI",p) |
38 | p = p + 1 | 38 | p = p + 1 |
39 | } | 39 | } |
40 | if(grepl("age|Age|AGE",mat[2,j])==TRUE){ | 40 | if(grepl("age|Age|AGE",mat[2,j])==TRUE){ |
41 | colnames(mat)[j] <- paste0("Age",a) | 41 | colnames(mat)[j] <- paste0("Age",a) |
42 | a = a + 1 | 42 | a = a + 1 |
43 | } | 43 | } |
44 | if(grepl("braak|b&b",mat[2,j])==TRUE){ | 44 | if(grepl("braak|b&b",mat[2,j])==TRUE){ |
45 | colnames(mat)[j] <- paste0("Braak",b) | 45 | colnames(mat)[j] <- paste0("Braak",b) |
46 | b = b + 1 | 46 | b = b + 1 |
47 | } | 47 | } |
48 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,j])==TRUE){ | 48 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,j])==TRUE){ |
49 | colnames(mat)[j] <- paste0("Group",g) | 49 | colnames(mat)[j] <- paste0("Group",g) |
50 | g = g + 1 | 50 | g = g + 1 |
51 | } | 51 | } |
52 | 52 | ||
53 | } | 53 | } |
54 | j = j + 1 | 54 | j = j + 1 |
55 | } | 55 | } |
56 | mat | 56 | mat |
57 | } | 57 | } |
58 | 58 | ||
59 | #2#Function for reorganizing information within the columns | 59 | #2#Function for reorganizing information within the columns |
60 | cinfo <- function(mat){ | 60 | cinfo <- function(mat){ |
61 | col <- dim(mat)[2] | 61 | col <- dim(mat)[2] |
62 | j <-2 | 62 | j <-2 |
63 | for(j in 2:col){ | 63 | for(j in 2:col){ |
64 | if(grepl("Group",colnames(mat)[j]) == TRUE){ | 64 | if(grepl("Group",colnames(mat)[j]) == TRUE){ |
65 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) | 65 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) |
66 | } | 66 | } |
67 | if(grepl("Age",colnames(mat)[j])==TRUE){ | 67 | if(grepl("Age",colnames(mat)[j])==TRUE){ |
68 | mat[,j] <- gsub("\\D","",mat[,j])%>% | 68 | mat[,j] <- gsub("\\D","",mat[,j])%>% |
69 | as.integer() | 69 | as.integer() |
70 | } | 70 | } |
71 | if(grepl("Sex",colnames(mat)[j])==TRUE){ | 71 | if(grepl("Sex",colnames(mat)[j])==TRUE){ |
72 | mat[,j] <- gsub(".+:\\s","",mat[,j]) | 72 | mat[,j] <- gsub(".+:\\s","",mat[,j]) |
73 | } | 73 | } |
74 | if(grepl("PMI",colnames(mat)[j])==TRUE){ | 74 | if(grepl("PMI",colnames(mat)[j])==TRUE){ |
75 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% | 75 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% |
76 | as.numeric() | 76 | as.numeric() |
77 | } | 77 | } |
78 | if(grepl("Braak",colnames(mat)[j])==TRUE){ | 78 | if(grepl("Braak",colnames(mat)[j])==TRUE){ |
79 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% | 79 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% |
80 | as.roman()%>% | 80 | as.roman()%>% |
81 | as.integer() | 81 | as.integer() |
82 | } | 82 | } |
83 | j=j+1 | 83 | j=j+1 |
84 | } | 84 | } |
85 | mat | 85 | mat |
86 | } | 86 | } |
87 | 87 | ||
88 | #3#Function for labeling the gene IDs without names | 88 | #3#Function for labeling the gene IDs without names |
89 | NAFIXING <- function(GIDNAM){ | 89 | NAFIXING <- function(GIDNAM){ |
90 | row <- dim(GIDNAM)[1] | 90 | row <- dim(GIDNAM)[1] |
91 | i <- 1 | 91 | i <- 1 |
92 | for(i in 1:row){ | 92 | for(i in 1:row){ |
93 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ | 93 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ |
94 | GIDNAM[i,2] <- GIDNAM[i,1] | 94 | GIDNAM[i,2] <- GIDNAM[i,1] |
95 | } | 95 | } |
96 | i <- i + 1 | 96 | i <- i + 1 |
97 | } | 97 | } |
98 | GIDNAM | 98 | GIDNAM |
99 | } | 99 | } |
100 | 100 | ||
101 | #4#Function for changing the gene ID to gene name | 101 | #4#Function for changing the gene ID to gene name |
102 | cgeneID <- function(GeneName,DATA){ | 102 | cgeneID <- function(GeneName,DATA){ |
103 | nj <- t(GeneName) | 103 | nj <- t(GeneName) |
104 | nq <- t(DATA) | 104 | nq <- t(DATA) |
105 | colGene <- dim(nj)[2] | 105 | colGene <- dim(nj)[2] |
106 | colDATA <- dim(nq)[2] | 106 | colDATA <- dim(nq)[2] |
107 | j <- 1 | 107 | j <- 1 |
108 | for(j in 1:colDATA){ | 108 | for(j in 1:colDATA){ |
109 | #where is that gene id located within the GPL file | 109 | #where is that gene id located within the GPL file |
110 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) | 110 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) |
111 | if(is.na(sum(chngreq))==FALSE){ | 111 | if(is.na(sum(chngreq))==FALSE){ |
112 | if(sum(chngreq) > 0){ | 112 | if(sum(chngreq) > 0){ |
113 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) | 113 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) |
114 | } | 114 | } |
115 | } | 115 | } |
116 | j <- j + 1 | 116 | j <- j + 1 |
117 | } | 117 | } |
118 | nq | 118 | nq |
119 | } | 119 | } |
120 | #cgeneID <- function(GeneName,DATA){ | 120 | #cgeneID <- function(GeneName,DATA){ |
121 | # colGene <- dim(GeneName)[2] | 121 | # colGene <- dim(GeneName)[2] |
122 | # j <- 1 | 122 | # j <- 1 |
123 | # for(j in 1:colGene){ | 123 | # for(j in 1:colGene){ |
124 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) | 124 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) |
125 | # if(is.na(sum(chngsreq))==FALSE){ | 125 | # if(is.na(sum(chngsreq))==FALSE){ |
126 | # if(sum(chngsreq) > 0){ | 126 | # if(sum(chngsreq) > 0){ |
127 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) | 127 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) |
128 | # } | 128 | # } |
129 | # } | 129 | # } |
130 | # #if(sum(chngsreq) > 0){ | 130 | # #if(sum(chngsreq) > 0){ |
131 | # ##DATA[1,chngsreq] <- gsub(GeneName[1,j],GeneName[2,j],DATA[1,chngsreq]) | 131 | # ##DATA[1,chngsreq] <- gsub(GeneName[1,j],GeneName[2,j],DATA[1,chngsreq]) |
132 | # #DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) | 132 | # #DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) |
133 | # #} | 133 | # #} |
134 | # j = j+1 | 134 | # j = j+1 |
135 | # } | 135 | # } |
136 | # DATA | 136 | # DATA |
137 | #} | 137 | #} |
138 | 138 | ||
139 | #5#Function for adjusting the gene names | 139 | #5#Function for adjusting the gene names |
140 | gcnames <- function(DiData,usecol=1){ | 140 | gcnames <- function(DiData,usecol=1){ |
141 | nuruns <- dim(DiData)[2] | 141 | nuruns <- dim(DiData)[2] |
142 | i = 1 | 142 | i = 1 |
143 | nwnam <- rep("0",length.out=nuruns) | 143 | nwnam <- rep("0",length.out=nuruns) |
144 | for(i in 1:nuruns){ | 144 | for(i in 1:nuruns){ |
145 | if(length(strsplit(colnames(DiData)[i],"///|//")[[1]]) >= usecol){ | 145 | if(length(strsplit(colnames(DiData)[i],"///|//")[[1]]) >= usecol){ |
146 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][usecol]) | 146 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][usecol]) |
147 | } else{ | 147 | } else{ |
148 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][1]) | 148 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][1]) |
149 | } | 149 | } |
150 | 150 | ||
151 | } | 151 | } |
152 | nwnam | 152 | nwnam |
153 | 153 | ||
154 | } | 154 | } |
155 | 155 | ||
156 | #6# Function for discretizing the data | 156 | #6# Function for discretizing the data |
157 | dndat <- function(NDATA){ | 157 | dndat <- function(NDATA){ |
158 | rownd <- dim(NDATA)[1] | 158 | rownd <- dim(NDATA)[1] |
159 | colnd <- dim(NDATA)[2] | 159 | colnd <- dim(NDATA)[2] |
160 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) | 160 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) |
161 | colnames(DDATA) <- colnames(NDATA) | 161 | colnames(DDATA) <- colnames(NDATA) |
162 | i <- 1 | 162 | i <- 1 |
163 | for(i in 1:rownd){ | 163 | for(i in 1:rownd){ |
164 | j <- 1 | 164 | j <- 1 |
165 | for(j in 1:colnd){ | 165 | for(j in 1:colnd){ |
166 | if(is.na(NDATA[i,j])==FALSE){ | 166 | if(is.na(NDATA[i,j])==FALSE){ |
167 | 167 | ||
168 | if(NDATA[i,j] < -1){ | 168 | if(NDATA[i,j] < -1){ |
169 | DDATA[i,j]=0L | 169 | DDATA[i,j]=0L |
170 | } else if(NDATA[i,j] > 1){ | 170 | } else if(NDATA[i,j] > 1){ |
171 | DDATA[i,j]=2L | 171 | DDATA[i,j]=2L |
172 | } else if(-1 <= NDATA[i,j] && NDATA[i,j] <= 1){ | 172 | } else if(-1 <= NDATA[i,j] && NDATA[i,j] <= 1){ |
173 | DDATA[i,j]=1L | 173 | DDATA[i,j]=1L |
174 | } | 174 | } |
175 | } else{ | 175 | } else{ |
176 | DDATA[i,j] = NDATA[i,j] | 176 | DDATA[i,j] = NDATA[i,j] |
177 | } | 177 | } |
178 | j = j + 1 | 178 | j = j + 1 |
179 | } | 179 | } |
180 | i = i + 1 | 180 | i = i + 1 |
181 | } | 181 | } |
182 | DDATA | 182 | DDATA |
183 | } | 183 | } |
184 | 184 | ||
185 | 185 | ||
186 | #The Rest of this code will be used every time you want to change a data set | 186 | #The Rest of this code will be used every time you want to change a data set |
187 | 187 | ||
188 | #Getting the series matrix file | 188 | #Getting the series matrix file |
189 | print("Choose the series matrix file that you want to Analyze") | 189 | print("Choose the series matrix file that you want to Analyze") |
190 | alz <- file.choose() | 190 | alz <- file.choose() |
191 | 191 | ||
192 | #Getting the GPL file | 192 | #Getting the GPL file |
193 | print("Choose the GPL file that correlates with the above series matrix file") | 193 | print("Choose the GPL file that correlates with the above series matrix file") |
194 | genena <- file.choose() | 194 | genena <- file.choose() |
195 | 195 | ||
196 | 196 | ||
197 | #Find out if it is a soft GPL file or not | 197 | #Find out if it is a soft GPL file or not |
198 | soft <- strsplit(genena,"[\\|/]") %>% | 198 | soft <- strsplit(genena,"[\\|/]") %>% |
199 | .[[1]] %>% | 199 | .[[1]] %>% |
200 | .[length(.)] %>% | 200 | .[length(.)] %>% |
201 | grepl("soft|annot",.) | 201 | grepl("soft|annot",.) |
202 | 202 | ||
203 | #Working with the wordy part of the document | 203 | #Working with the wordy part of the document |
204 | alzword <- alz %>% | 204 | alzword <- alz %>% |
205 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 205 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
206 | filter(grepl("!Sample",X1))%>% | 206 | filter(grepl("!Sample",X1))%>% |
207 | filter(!grepl("!Sample_contact",X1)) | 207 | filter(!grepl("!Sample_contact",X1)) |
208 | 208 | ||
209 | ##Changing row names and column names: | 209 | ##Changing row names and column names: |
210 | ALZWORD <- t(alzword) | 210 | ALZWORD <- t(alzword) |
211 | rownames(ALZWORD)=NULL | 211 | rownames(ALZWORD)=NULL |
212 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 212 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
213 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 213 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
214 | ALZWORD <- ALZWORD%>% | 214 | ALZWORD <- ALZWORD%>% |
215 | as.data.frame(.,stringsAsFactors = FALSE)%>% | 215 | as.data.frame(.,stringsAsFactors = FALSE)%>% |
216 | dplyr::select(-starts_with("col")) | 216 | dplyr::select(-starts_with("col")) |
217 | 217 | ||
218 | ##Reorganizing information within the columns | 218 | ##Reorganizing information within the columns |
219 | ALZWORDF <- cinfo(ALZWORD) | 219 | ALZWORDF <- cinfo(ALZWORD) |
220 | 220 | ||
221 | 221 | ||
222 | #Working with Actual Data part of file | 222 | #Working with Actual Data part of file |
223 | alzdat <- alz %>% | 223 | alzdat <- alz %>% |
224 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 224 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
225 | ALZDAT <- t(alzdat[,-1]) | 225 | ALZDAT <- t(alzdat[,-1]) |
226 | rownames(ALZDAT)=NULL | 226 | rownames(ALZDAT)=NULL |
227 | 227 | ||
228 | ##Is there a clean version of the GPL file available? | 228 | ##Is there a clean version of the GPL file available? |
229 | gplnum <- strsplit(genena,"[\\|/]") %>% | 229 | gplnum <- strsplit(genena,"[\\|/]") %>% |
230 | .[[1]] %>% | 230 | .[[1]] %>% |
231 | .[length(.)] %>% | 231 | .[length(.)] %>% |
232 | gsub("\\D","",.) | 232 | gsub("\\D","",.) |
233 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 233 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
234 | if(clfileex >= 1){ | 234 | if(clfileex >= 1){ |
235 | #use the clean version | 235 | #use the clean version |
236 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 236 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
237 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 237 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
238 | 238 | ||
239 | } else if(clfileex == 0){ | 239 | } else if(clfileex == 0){ |
240 | ##Lets Create a clean version | 240 | ##Lets Create a clean version |
241 | 241 | ||
242 | ##Gene ID to Gene Name | 242 | ##Gene ID to Gene Name |
243 | if(soft == TRUE){ | 243 | if(soft == TRUE){ |
244 | #Check to see if there is already a file containing information on soft files | 244 | #Check to see if there is already a file containing information on soft files |
245 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 245 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
246 | if(fileex == 1){ | 246 | if(fileex == 1){ |
247 | #Check to see if this GPL soft file has been used before | 247 | #Check to see if this GPL soft file has been used before |
248 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 248 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
249 | .$GPL_FILE_NUM%>% | 249 | .$GPL_FILE_NUM%>% |
250 | grepl(gplnum,.) %>% | 250 | grepl(gplnum,.) %>% |
251 | sum() | 251 | sum() |
252 | if(IDF == 1){ | 252 | if(IDF == 1){ |
253 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 253 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
254 | .$GPL_FILE_NUM%>% | 254 | .$GPL_FILE_NUM%>% |
255 | grep(gplnum,.) | 255 | grep(gplnum,.) |
256 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 256 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
257 | .$LOC_ID %>% | 257 | .$LOC_ID %>% |
258 | .[IDLOCAL] | 258 | .[IDLOCAL] |
259 | geneIDNam <- genena %>% | 259 | geneIDNam <- genena %>% |
260 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 260 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
261 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 261 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
262 | } else if(IDF == 0){ | 262 | } else if(IDF == 0){ |
263 | #No information on this particular GPL file | 263 | #No information on this particular GPL file |
264 | idLOCGPL <- genena %>% | 264 | idLOCGPL <- genena %>% |
265 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 265 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
266 | t(.) %>% | 266 | t(.) %>% |
267 | grep("^ID\\s*$",.) %>% | 267 | grep("^ID\\s*$",.) %>% |
268 | -1 | 268 | -1 |
269 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 269 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
270 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 270 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
271 | geneIDNam <- genena %>% | 271 | geneIDNam <- genena %>% |
272 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 272 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
273 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 273 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
274 | } | 274 | } |
275 | } else if(fileex == 0){ | 275 | } else if(fileex == 0){ |
276 | #We must create a file that we can access for later use | 276 | #We must create a file that we can access for later use |
277 | idLOCGPL <- genena %>% | 277 | idLOCGPL <- genena %>% |
278 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 278 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
279 | t(.) %>% | 279 | t(.) %>% |
280 | grep("^ID\\s*$",.) %>% | 280 | grep("^ID\\s*$",.) %>% |
281 | -1 | 281 | -1 |
282 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 282 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
283 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 283 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
284 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 284 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
285 | geneIDNam <- genena %>% | 285 | geneIDNam <- genena %>% |
286 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 286 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
287 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 287 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
288 | } | 288 | } |
289 | } else if(soft == FALSE){ | 289 | } else if(soft == FALSE){ |
290 | geneIDNam <- genena %>% | 290 | geneIDNam <- genena %>% |
291 | read_delim(delim="\t",comment = "#")%>% | 291 | read_delim(delim="\t",comment = "#")%>% |
292 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 292 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$|^UCSC_RefGene_Name$",colnames(.))) |
293 | } | 293 | } |
294 | 294 | ||
295 | ##Labeling the gene IDs without names | 295 | ##Labeling the gene IDs without names |
296 | geneIDNam <- NAFIXING(geneIDNam) | 296 | geneIDNam <- NAFIXING(geneIDNam) |
297 | 297 | ||
298 | ##remove the whitespace | 298 | ##remove the whitespace |
299 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 299 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
300 | 300 | ||
301 | ##Here is the clean version | 301 | ##Here is the clean version |
302 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 302 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
303 | } | 303 | } |
304 | 304 | ||
305 | 305 | ||
306 | 306 | ||
307 | ##Changing the gene ID to gene name | 307 | ##Changing the gene ID to gene name |
308 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) | 308 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) |
309 | colnames(ALZDAT) = ALZDAT1[1,] | 309 | colnames(ALZDAT) = ALZDAT1[1,] |
310 | 310 | ||
311 | 311 | ||
312 | ##Adjusting the column names aka the gene names | 312 | ##Adjusting the column names aka the gene names |
313 | colnames(ALZDAT) <- gcnames(ALZDAT) | 313 | colnames(ALZDAT) <- gcnames(ALZDAT) |
314 | 314 | ||
315 | 315 | ||
316 | #Full RAW Data | 316 | #Full RAW Data |
317 | Fullalzdwr <- ALZDAT %>% | 317 | Fullalzdwr <- ALZDAT %>% |
318 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 318 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
319 | cbind(ALZWORDF,.) | 319 | cbind(ALZWORDF,.) |
320 | 320 | ||
321 | 321 | ||
322 | #Raw file is output | 322 | #Raw file is output |
323 | nfnaex <- strsplit(alz,"[\\]") %>% | 323 | nfnaex <- strsplit(alz,"[\\]") %>% |
324 | .[[1]] %>% | 324 | .[[1]] %>% |
325 | .[length(.)] %>% | 325 | .[length(.)] %>% |
326 | gsub("\\D","",.) %>% | 326 | gsub("\\D","",.) %>% |
327 | c("GSE",.,"aftexcel.txt") %>% | 327 | c("GSE",.,"aftexcel.txt") %>% |
328 | paste(collapse = "") | 328 | paste(collapse = "") |
329 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 329 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
330 | 330 | ||
331 | 331 | ||
332 | #Now for the discretization part | 332 | #Now for the discretization part |
333 | ##get the wordy part again | 333 | ##get the wordy part again |
334 | rawword <- t(ALZWORDF) | 334 | rawword <- t(ALZWORDF) |
335 | 335 | ||
336 | ##where is ID_REF located | 336 | ##where is ID_REF located |
337 | hereim <- grep("ID_REF",rownames(rawword)) | 337 | hereim <- grep("ID_REF",rownames(rawword)) |
338 | 338 | ||
339 | ##Subject Names GSM... | 339 | ##Subject Names GSM... |
340 | subjnam <- rawword[hereim,] | 340 | subjnam <- rawword[hereim,] |
341 | 341 | ||
342 | ##Getting the names for the rows | 342 | ##Getting the names for the rows |
343 | namedarows <- rownames(rawword)[-hereim] %>% | 343 | namedarows <- rownames(rawword)[-hereim] %>% |
344 | as.data.frame(.,stringsAsFactors = FALSE) | 344 | as.data.frame(.,stringsAsFactors = FALSE) |
345 | RAWWORD <- rawword[-hereim,] %>% | 345 | RAWWORD <- rawword[-hereim,] %>% |
346 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 346 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
347 | bind_cols(namedarows,.) | 347 | bind_cols(namedarows,.) |
348 | z <- 1 | 348 | z <- 1 |
349 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 349 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
350 | for(z in 1:dim(RAWWORD)[1]){ | 350 | for(z in 1:dim(RAWWORD)[1]){ |
351 | if(sum(is.na(RAWWORD[z,])) > 0){ | 351 | if(sum(is.na(RAWWORD[z,])) > 0){ |
352 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 352 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
353 | } | 353 | } |
354 | if(length(grep("NA",RAWWORD[z,])) > 0){ | 354 | if(length(grep("NA",RAWWORD[z,])) > 0){ |
355 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] | 355 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] |
356 | } | 356 | } |
357 | z <- z + 1 | 357 | z <- z + 1 |
358 | } | 358 | } |
359 | 359 | ||
360 | colnames(naroww) <- "ROW_NAs" | 360 | colnames(naroww) <- "ROW_NAs" |
361 | RAWWORD <- bind_cols(RAWWORD,naroww) | 361 | RAWWORD <- bind_cols(RAWWORD,naroww) |
362 | 362 | ||
363 | 363 | ||
364 | roALZna <- t(ALZDAT) %>% | 364 | roALZna <- t(ALZDAT) %>% |
365 | rownames(.) %>% | 365 | rownames(.) %>% |
366 | as.data.frame(.,stringsAsFactors = FALSE) | 366 | as.data.frame(.,stringsAsFactors = FALSE) |
367 | colnames(roALZna) <- "ID_REF" | 367 | colnames(roALZna) <- "ID_REF" |
368 | 368 | ||
369 | RAWDAT <- t(ALZDAT) %>% | 369 | RAWDAT <- t(ALZDAT) %>% |
370 | as.data.frame(.,stringsAsFactors = FALSE) | 370 | as.data.frame(.,stringsAsFactors = FALSE) |
371 | colnames(RAWDAT) <- NULL | 371 | colnames(RAWDAT) <- NULL |
372 | rownames(RAWDAT) <- NULL | 372 | rownames(RAWDAT) <- NULL |
373 | 373 | ||
374 | RAWDAT2 <- RAWDAT %>% | 374 | RAWDAT2 <- RAWDAT %>% |
375 | cbind(roALZna,.) %>% | 375 | cbind(roALZna,.) %>% |
376 | dplyr::arrange(.,ID_REF) | 376 | dplyr::arrange(.,ID_REF) |
377 | 377 | ||
378 | ##Editing the file for R processing | 378 | ##Editing the file for R processing |
379 | RAWDATID <- RAWDAT2[,1] %>% | 379 | RAWDATID <- RAWDAT2[,1] %>% |
380 | as.matrix(.) | 380 | as.matrix(.) |
381 | 381 | ||
382 | RAWDATNUM <- RAWDAT2[,-1] %>% | 382 | RAWDATNUM <- RAWDAT2[,-1] %>% |
383 | mapply(.,FUN = as.numeric) %>% | 383 | mapply(.,FUN = as.numeric) %>% |
384 | t(.) | 384 | t(.) |
385 | 385 | ||
386 | ##Consolidating genes with the same name | 386 | ##Consolidating genes with the same name |
387 | ###create empty matrix of size equal to tabRDATID | 387 | ###create empty matrix of size equal to tabRDATID |
388 | tabRDATID <- table(RAWDATID) | 388 | tabRDATID <- table(RAWDATID) |
389 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 389 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
390 | j <- 1 | 390 | j <- 1 |
391 | for(j in 1:length(tabRDATID)){ | 391 | for(j in 1:length(tabRDATID)){ |
392 | 392 | ||
393 | ##Putting the ones without duplicates in their new homes | 393 | ##Putting the ones without duplicates in their new homes |
394 | if(tabRDATID[j] == 1){ | 394 | if(tabRDATID[j] == 1){ |
395 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 395 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
396 | } else if(tabRDATID[j] > 1){ | 396 | } else if(tabRDATID[j] > 1){ |
397 | ##Averaging duplicates and putting them in their new homes | 397 | ##Averaging duplicates and putting them in their new homes |
398 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 398 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
399 | } | 399 | } |
400 | j <- j + 1 | 400 | j <- j + 1 |
401 | } | 401 | } |
402 | 402 | ||
403 | ##Outputting non Z-score Average over genes | 403 | ##Outputting non Z-score Average over genes |
404 | newoutput <-NuRDATN | 404 | newoutput <-NuRDATN |
405 | colnames(newoutput) <- rownames(tabRDATID) | 405 | colnames(newoutput) <- rownames(tabRDATID) |
406 | nfnewout <- strsplit(alz,"[\\]") %>% | 406 | nfnewout <- strsplit(alz,"[\\]") %>% |
407 | .[[1]] %>% | 407 | .[[1]] %>% |
408 | .[length(.)] %>% | 408 | .[length(.)] %>% |
409 | gsub("\\D","",.) %>% | 409 | gsub("\\D","",.) %>% |
410 | c("GSE",.,"avg.txt") %>% | 410 | c("GSE",.,"avg.txt") %>% |
411 | paste(collapse = "") | 411 | paste(collapse = "") |
412 | noutput <- newoutput %>% | 412 | noutput <- newoutput %>% |
413 | t()%>% | 413 | t()%>% |
414 | as.data.frame(.,stringsAsFactors = FALSE) | 414 | as.data.frame(.,stringsAsFactors = FALSE) |
415 | noutput <- cbind(rownames(noutput),noutput) | 415 | noutput <- cbind(rownames(noutput),noutput) |
416 | colnames(noutput) <- c("Gene Symbol",subjnam) | 416 | colnames(noutput) <- c("Gene Symbol",subjnam) |
417 | rownames(noutput) <- NULL | 417 | rownames(noutput) <- NULL |
418 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) | 418 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) |
419 | 419 | ||
420 | 420 | ||
421 | ##Scaling the Data | 421 | ##Scaling the Data |
422 | scrawdat <- NuRDATN%>% | 422 | scrawdat <- NuRDATN%>% |
423 | scale() | 423 | scale() |
424 | attr(scrawdat,"scaled:center") <- NULL | 424 | attr(scrawdat,"scaled:center") <- NULL |
425 | attr(scrawdat,"scaled:scale") <- NULL | 425 | attr(scrawdat,"scaled:scale") <- NULL |
426 | colnames(scrawdat) <- rownames(tabRDATID) | 426 | colnames(scrawdat) <- rownames(tabRDATID) |
427 | 427 | ||
428 | #Outputting the Z-score file | 428 | #Outputting the Z-score file |
429 | nfnzsc <- strsplit(alz,"[\\]") %>% | 429 | nfnzsc <- strsplit(alz,"[\\]") %>% |
430 | .[[1]] %>% | 430 | .[[1]] %>% |
431 | .[length(.)] %>% | 431 | .[length(.)] %>% |
432 | gsub("\\D","",.) %>% | 432 | gsub("\\D","",.) %>% |
433 | c("GSE",.,"zscore.txt") %>% | 433 | c("GSE",.,"zscore.txt") %>% |
434 | paste(collapse = "") | 434 | paste(collapse = "") |
435 | zscraw <- scrawdat %>% | 435 | zscraw <- scrawdat %>% |
436 | t()%>% | 436 | t()%>% |
437 | as.data.frame(.,stringsAsFactors = FALSE) | 437 | as.data.frame(.,stringsAsFactors = FALSE) |
438 | zscraw <- cbind(rownames(zscraw),zscraw) | 438 | zscraw <- cbind(rownames(zscraw),zscraw) |
439 | colnames(zscraw) <- c("Gene Symbol",subjnam) | 439 | colnames(zscraw) <- c("Gene Symbol",subjnam) |
440 | rownames(zscraw) <- NULL | 440 | rownames(zscraw) <- NULL |
441 | write.table(zscraw, file = nfnzsc, sep = "\t",col.names = TRUE,row.names = FALSE) | 441 | write.table(zscraw, file = nfnzsc, sep = "\t",col.names = TRUE,row.names = FALSE) |
442 | 442 | ||
443 | 443 | ||
444 | ##Discretized the Data | 444 | ##Discretized the Data |
445 | dialzdat <- scrawdat %>% | 445 | dialzdat <- scrawdat %>% |
446 | dndat(.) %>% | 446 | dndat(.) %>% |
447 | t()%>% | 447 | t()%>% |
448 | as.data.frame(.,stringsAsFactors = FALSE) | 448 | as.data.frame(.,stringsAsFactors = FALSE) |
449 | colnames(dialzdat) <- rownames(RAWDATNUM) | 449 | colnames(dialzdat) <- rownames(RAWDATNUM) |
450 | 450 | ||
451 | ##setting "ID_REF" as a new variable | 451 | ##setting "ID_REF" as a new variable |
452 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) | 452 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) |
453 | colnames(geneNAM) <- "ID_REF" | 453 | colnames(geneNAM) <- "ID_REF" |
454 | rownames(dialzdat) <- NULL | 454 | rownames(dialzdat) <- NULL |
455 | dialzdat <-bind_cols(geneNAM,dialzdat) | 455 | dialzdat <-bind_cols(geneNAM,dialzdat) |
456 | 456 | ||
457 | ##NAs in a column | 457 | ##NAs in a column |
458 | x <- 2 | 458 | x <- 2 |
459 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 459 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
460 | nacol[1,1] = "COL_NAs" | 460 | nacol[1,1] = "COL_NAs" |
461 | for(x in 2:dim(dialzdat)[2]){ | 461 | for(x in 2:dim(dialzdat)[2]){ |
462 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 462 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
463 | x <- x + 1 | 463 | x <- x + 1 |
464 | } | 464 | } |
465 | colnames(nacol) <- colnames(dialzdat) | 465 | colnames(nacol) <- colnames(dialzdat) |
466 | dialzdat<-bind_rows(dialzdat,nacol) | 466 | dialzdat<-bind_rows(dialzdat,nacol) |
467 | 467 | ||
468 | ##NAs in a row | 468 | ##NAs in a row |
469 | y <- 1 | 469 | y <- 1 |
470 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 470 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
471 | for(y in 1:dim(dialzdat)[1]){ | 471 | for(y in 1:dim(dialzdat)[1]){ |
472 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 472 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
473 | y <- y + 1 | 473 | y <- y + 1 |
474 | } | 474 | } |
475 | colnames(narowd) <- "ROW_NAs" | 475 | colnames(narowd) <- "ROW_NAs" |
476 | dialzdat <- bind_cols(dialzdat,narowd) | 476 | dialzdat <- bind_cols(dialzdat,narowd) |
477 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 477 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
478 | colnames(RAWWORD) <- colnames(dialzdat) | 478 | colnames(RAWWORD) <- colnames(dialzdat) |
479 | ##converting to character so that the clinical can be brought together with discrete data | 479 | ##converting to character so that the clinical can be brought together with discrete data |
480 | k <- 2 | 480 | k <- 2 |
481 | for(k in 2:dim(dialzdat)[2]-1){ | 481 | for(k in 2:dim(dialzdat)[2]-1){ |
482 | dialzdat[,k] <- as.character(dialzdat[,k]) | 482 | dialzdat[,k] <- as.character(dialzdat[,k]) |
483 | k <- k + 1 | 483 | k <- k + 1 |
484 | } | 484 | } |
485 | #The End the full data | 485 | #The End the full data |
486 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 486 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
487 | 487 | ||
488 | #Produces Discrete file | 488 | #Produces Discrete file |
489 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 489 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
490 | .[[1]] %>% | 490 | .[[1]] %>% |
491 | .[length(.)] %>% | 491 | .[length(.)] %>% |
492 | gsub("\\D","",.) %>% | 492 | gsub("\\D","",.) %>% |
493 | c("GSE",.,"dscrt.txt") %>% | 493 | c("GSE",.,"dscrt.txt") %>% |
494 | paste(collapse = "") | 494 | paste(collapse = "") |
495 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 495 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
496 | 496 | ||
497 | 497 |