Commit 69ac507843530d76722471db7ddbf5f213a11aee
1 parent
ae780ea650
Exists in
master
Don't use this code yet
Updated to decrease time of search for cgeneID
Showing
1 changed file
with
29 additions
and
11 deletions
Show diff stats
RAutoClDs.R
| 1 | ######################################################################## | 1 | ######################################################################## |
| 2 | # Don't Use This Code Just Yet # | 2 | # Don't Use This Code Just Yet # |
| 3 | ######################################################################## | 3 | ######################################################################## |
| 4 | #Efrain H. Gonzalez | 4 | #Efrain H. Gonzalez |
| 5 | #6/16/2017 | 5 | #6/16/2017 |
| 6 | 6 | ||
| 7 | #Libraries required to run the code | 7 | #Libraries required to run the code |
| 8 | library(pryr) | 8 | library(pryr) |
| 9 | library(MASS) | 9 | library(MASS) |
| 10 | library(dplyr) | 10 | library(dplyr) |
| 11 | library(tidyr) | 11 | library(tidyr) |
| 12 | library(readr) | 12 | library(readr) |
| 13 | library(stringr) | 13 | library(stringr) |
| 14 | 14 | ||
| 15 | 15 | ||
| 16 | #Necessary Functions | 16 | #Necessary Functions |
| 17 | #1#Function for handling the changing of row names and column names | 17 | #1#Function for handling the changing of row names and column names |
| 18 | chngrownm <- function(mat){ | 18 | chngrownm <- function(mat){ |
| 19 | row <- dim(mat)[1] | 19 | row <- dim(mat)[1] |
| 20 | col <- dim(mat)[2] | 20 | col <- dim(mat)[2] |
| 21 | e <- 1 | 21 | e <- 1 |
| 22 | r <- 1 | 22 | r <- 1 |
| 23 | a <- 1 | 23 | a <- 1 |
| 24 | h <- 1 | 24 | h <- 1 |
| 25 | g <- 1 | 25 | g <- 1 |
| 26 | o <- 1 | 26 | o <- 1 |
| 27 | for(e in 1:col){ | 27 | for(e in 1:col){ |
| 28 | if("!Sample_source_name_ch1"==mat[1,e]){ | 28 | if("!Sample_source_name_ch1"==mat[1,e]){ |
| 29 | colnames(mat)[e] <- "Brain_Region" | 29 | colnames(mat)[e] <- "Brain_Region" |
| 30 | } | 30 | } |
| 31 | else if("!Sample_title" == mat[1,e]){ | 31 | else if("!Sample_title" == mat[1,e]){ |
| 32 | colnames(mat)[e] <- "Title" | 32 | colnames(mat)[e] <- "Title" |
| 33 | } | 33 | } |
| 34 | else if("!Sample_geo_accession" == mat[1,e]){ | 34 | else if("!Sample_geo_accession" == mat[1,e]){ |
| 35 | colnames(mat)[e] <- "ID_REF" | 35 | colnames(mat)[e] <- "ID_REF" |
| 36 | } else{ | 36 | } else{ |
| 37 | if(grepl("Sex|gender|Gender|sex",mat[2,e])==TRUE){ | 37 | if(grepl("Sex|gender|Gender|sex",mat[2,e])==TRUE){ |
| 38 | colnames(mat)[e] <- paste0("Sex",r) | 38 | colnames(mat)[e] <- paste0("Sex",r) |
| 39 | r = r + 1 | 39 | r = r + 1 |
| 40 | } | 40 | } |
| 41 | else if(grepl("postmorteminterval|PMI|pmi",mat[2,e])==TRUE){ | 41 | else if(grepl("postmorteminterval|PMI|pmi",mat[2,e])==TRUE){ |
| 42 | colnames(mat)[e] <- paste0("PMI",a) | 42 | colnames(mat)[e] <- paste0("PMI",a) |
| 43 | a = a + 1 | 43 | a = a + 1 |
| 44 | } | 44 | } |
| 45 | else if(grepl("age|Age|AGE",mat[2,e])==TRUE){ | 45 | else if(grepl("age|Age|AGE",mat[2,e])==TRUE){ |
| 46 | colnames(mat)[e] <- paste0("Age",h) | 46 | colnames(mat)[e] <- paste0("Age",h) |
| 47 | h = h + 1 | 47 | h = h + 1 |
| 48 | } | 48 | } |
| 49 | else if(grepl("braak|b&b",mat[2,e])==TRUE){ | 49 | else if(grepl("braak|b&b",mat[2,e])==TRUE){ |
| 50 | colnames(mat)[e] <- paste0("Braak",g) | 50 | colnames(mat)[e] <- paste0("Braak",g) |
| 51 | g = g + 1 | 51 | g = g + 1 |
| 52 | } | 52 | } |
| 53 | else if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,e])==TRUE){ | 53 | else if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,e])==TRUE){ |
| 54 | colnames(mat)[e] <- paste0("Group",o) | 54 | colnames(mat)[e] <- paste0("Group",o) |
| 55 | o = o + 1 | 55 | o = o + 1 |
| 56 | } | 56 | } |
| 57 | 57 | ||
| 58 | } | 58 | } |
| 59 | e = e + 1 | 59 | e = e + 1 |
| 60 | } | 60 | } |
| 61 | mat | 61 | mat |
| 62 | } | 62 | } |
| 63 | 63 | ||
| 64 | #2#Function for reorganizing information within the columns | 64 | #2#Function for reorganizing information within the columns |
| 65 | cinfo <- function(mat){ | 65 | cinfo <- function(mat){ |
| 66 | col <- dim(mat)[2] | 66 | col <- dim(mat)[2] |
| 67 | j <-2 | 67 | j <-2 |
| 68 | for(j in 2:col){ | 68 | for(j in 2:col){ |
| 69 | if(grepl("Group",colnames(mat)[j]) == TRUE){ | 69 | if(grepl("Group",colnames(mat)[j]) == TRUE){ |
| 70 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) | 70 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) |
| 71 | } | 71 | } |
| 72 | else if(grepl("Age",colnames(mat)[j])==TRUE){ | 72 | else if(grepl("Age",colnames(mat)[j])==TRUE){ |
| 73 | mat[,j] <- gsub("\\D","",mat[,j])%>% | 73 | mat[,j] <- gsub("\\D","",mat[,j])%>% |
| 74 | as.integer() | 74 | as.integer() |
| 75 | } | 75 | } |
| 76 | else if(grepl("Sex",colnames(mat)[j])==TRUE){ | 76 | else if(grepl("Sex",colnames(mat)[j])==TRUE){ |
| 77 | mat[,j] <- gsub(".+:\\s","",mat[,j]) | 77 | mat[,j] <- gsub(".+:\\s","",mat[,j]) |
| 78 | } | 78 | } |
| 79 | else if(grepl("PMI",colnames(mat)[j])==TRUE){ | 79 | else if(grepl("PMI",colnames(mat)[j])==TRUE){ |
| 80 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% | 80 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% |
| 81 | as.numeric() | 81 | as.numeric() |
| 82 | } | 82 | } |
| 83 | else if(grepl("Braak",colnames(mat)[j])==TRUE){ | 83 | else if(grepl("Braak",colnames(mat)[j])==TRUE){ |
| 84 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% | 84 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% |
| 85 | as.roman()%>% | 85 | as.roman()%>% |
| 86 | as.integer() | 86 | as.integer() |
| 87 | } | 87 | } |
| 88 | j=j+1 | 88 | j=j+1 |
| 89 | } | 89 | } |
| 90 | mat | 90 | mat |
| 91 | } | 91 | } |
| 92 | 92 | ||
| 93 | #3#Function for labeling the gene IDs without names | 93 | #3#Function for labeling the gene IDs without names |
| 94 | NAFIXING <- function(GIDNAM){ | 94 | NAFIXING <- function(GIDNAM){ |
| 95 | row <- dim(GIDNAM)[1] | 95 | row <- dim(GIDNAM)[1] |
| 96 | i <- 1 | 96 | i <- 1 |
| 97 | for(i in 1:row){ | 97 | for(i in 1:row){ |
| 98 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ | 98 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ |
| 99 | GIDNAM[i,2] <- GIDNAM[i,1] | 99 | GIDNAM[i,2] <- GIDNAM[i,1] |
| 100 | } | 100 | } |
| 101 | i <- i + 1 | 101 | i <- i + 1 |
| 102 | } | 102 | } |
| 103 | GIDNAM | 103 | GIDNAM |
| 104 | } | 104 | } |
| 105 | 105 | ||
| 106 | #4#Function for changing the gene ID to gene name | 106 | #4#Function for changing the gene ID to gene name |
| 107 | cgeneID <- function(GeneName,DATA){ | 107 | cgeneID2 <- function(GeneName,DATA){ |
| 108 | colGene <- dim(GeneName)[2] | 108 | nj <- t(GeneName) |
| 109 | j <- 1 | 109 | nq <- t(DATA) |
| 110 | for(j in 1:colGene){ | 110 | colGene <- dim(nj)[2] |
| 111 | chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) | 111 | colDATA <- dim(nq)[2] |
| 112 | if(is.na(sum(chngsreq))==FALSE){ | 112 | j <- 1 |
| 113 | if(sum(chngsreq) > 0){ | 113 | for(j in 1:colDATA){ |
| 114 | DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) | 114 | #where is that gene id located within the GPL file |
| 115 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) | ||
| 116 | if(is.na(sum(chngreq))==FALSE){ | ||
| 117 | if(sum(chngreq) > 0){ | ||
| 118 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) | ||
| 119 | } | ||
| 115 | } | 120 | } |
| 121 | j <- j + 1 | ||
| 116 | } | 122 | } |
| 117 | j = j+1 | 123 | nq |
| 118 | } | ||
| 119 | DATA | ||
| 120 | } | 124 | } |
| 125 | #cgeneID <- function(GeneName,DATA){ | ||
| 126 | # colGene <- dim(GeneName)[2] | ||
| 127 | # j <- 1 | ||
| 128 | # for(j in 1:colGene){ | ||
| 129 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) | ||
| 130 | # if(is.na(sum(chngsreq))==FALSE){ | ||
| 131 | # if(sum(chngsreq) > 0){ | ||
| 132 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) | ||
| 133 | # } | ||
| 134 | # } | ||
| 135 | # j = j+1 | ||
| 136 | # } | ||
| 137 | # DATA | ||
| 138 | #} | ||
| 121 | 139 | ||
| 122 | #5#Function for adjusting the gene names | 140 | #5#Function for adjusting the gene names |
| 123 | gcnames <- function(DiData,usecol=1){ | 141 | gcnames <- function(DiData,usecol=1){ |
| 124 | nuruns <- dim(DiData)[2] | 142 | nuruns <- dim(DiData)[2] |
| 125 | i = 1 | 143 | i = 1 |
| 126 | nwnam <- rep("0",length.out=nuruns) | 144 | nwnam <- rep("0",length.out=nuruns) |
| 127 | for(i in 1:nuruns){ | 145 | for(i in 1:nuruns){ |
| 128 | if(length(strsplit(colnames(DiData)[i],"///")[[1]]) >= usecol){ | 146 | if(length(strsplit(colnames(DiData)[i],"///")[[1]]) >= usecol){ |
| 129 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][usecol]) | 147 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][usecol]) |
| 130 | } else{ | 148 | } else{ |
| 131 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][1]) | 149 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][1]) |
| 132 | } | 150 | } |
| 133 | 151 | ||
| 134 | } | 152 | } |
| 135 | nwnam | 153 | nwnam |
| 136 | 154 | ||
| 137 | } | 155 | } |
| 138 | 156 | ||
| 139 | #6# Function for discretizing the data | 157 | #6# Function for discretizing the data |
| 140 | dndat <- function(NDATA){ | 158 | dndat <- function(NDATA){ |
| 141 | rownd <- dim(NDATA)[1] | 159 | rownd <- dim(NDATA)[1] |
| 142 | colnd <- dim(NDATA)[2] | 160 | colnd <- dim(NDATA)[2] |
| 143 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) | 161 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) |
| 144 | colnames(DDATA) <- colnames(NDATA) | 162 | colnames(DDATA) <- colnames(NDATA) |
| 145 | i <- 1 | 163 | i <- 1 |
| 146 | for(i in 1:rownd){ | 164 | for(i in 1:rownd){ |
| 147 | j <- 1 | 165 | j <- 1 |
| 148 | for(j in 1:colnd){ | 166 | for(j in 1:colnd){ |
| 149 | if(is.na(NDATA[i,j])==FALSE){ | 167 | if(is.na(NDATA[i,j])==FALSE){ |
| 150 | 168 | ||
| 151 | if(NDATA[i,j] < -1){ | 169 | if(NDATA[i,j] < -1){ |
| 152 | DDATA[i,j]=0L | 170 | DDATA[i,j]=0L |
| 153 | } | 171 | } |
| 154 | if(NDATA[i,j] > 1){ | 172 | if(NDATA[i,j] > 1){ |
| 155 | DDATA[i,j]=2L | 173 | DDATA[i,j]=2L |
| 156 | } | 174 | } |
| 157 | if(-1 <= NDATA[i,j] && NDATA[i,j] < 1){ | 175 | if(-1 <= NDATA[i,j] && NDATA[i,j] < 1){ |
| 158 | DDATA[i,j]=1L | 176 | DDATA[i,j]=1L |
| 159 | } | 177 | } |
| 160 | } else{ | 178 | } else{ |
| 161 | DDATA[i,j] = NDATA[i,j] | 179 | DDATA[i,j] = NDATA[i,j] |
| 162 | } | 180 | } |
| 163 | j = j + 1 | 181 | j = j + 1 |
| 164 | } | 182 | } |
| 165 | i = i + 1 | 183 | i = i + 1 |
| 166 | } | 184 | } |
| 167 | DDATA | 185 | DDATA |
| 168 | } | 186 | } |
| 169 | 187 | ||
| 170 | 188 | ||
| 171 | #MajorFunction#This is the function that does everything else | 189 | #MajorFunction#This is the function that does everything else |
| 172 | THEFT <- function(){ | 190 | THEFT <- function(){ |
| 173 | #Set working directory based on the directory of the series matrix file Currently only works for windows | 191 | #Set working directory based on the directory of the series matrix file Currently only works for windows |
| 174 | wd <- getwd() | 192 | wd <- getwd() |
| 175 | #list.files() | 193 | #list.files() |
| 176 | #gsub("wd",wd,"Do you want to clean all data files in the directory wd?") | 194 | #gsub("wd",wd,"Do you want to clean all data files in the directory wd?") |
| 177 | numDAT <- switch(EXPR = menu(choices = c("Yes","No"),title = gsub("wd",wd,"Do you want to clean all data files in the directory wd?")) + 1,cat("Nothing done\n"),1L,2L) | 195 | numDAT <- switch(EXPR = menu(choices = c("Yes","No"),title = gsub("wd",wd,"Do you want to clean all data files in the directory wd?")) + 1,cat("Nothing done\n"),1L,2L) |
| 178 | GSEfileloc <- grep("^GSE.+\\.txt\\.gz$",list.files()) | 196 | GSEfileloc <- grep("^GSE.+\\.txt\\.gz$",list.files()) |
| 179 | GSEfloc <- list.files()[GSEfileloc] | 197 | GSEfloc <- list.files()[GSEfileloc] |
| 180 | #ALL DATA FILES WILL BE CLEANED | 198 | #ALL DATA FILES WILL BE CLEANED |
| 181 | if(numDAT == 1){ | 199 | if(numDAT == 1){ |
| 182 | #indexing the data files | 200 | #indexing the data files |
| 183 | n <- 1 | 201 | n <- 1 |
| 184 | for(n in 1: length(GSEfloc)){ | 202 | for(n in 1: length(GSEfloc)){ |
| 185 | alz <- GSEfloc[n] | 203 | alz <- GSEfloc[n] |
| 186 | 204 | ||
| 187 | #Working with the wordy part of the document | 205 | #Working with the wordy part of the document |
| 188 | alzword <- alz %>% | 206 | alzword <- alz %>% |
| 189 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 207 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
| 190 | filter(grepl("!Sample",X1))%>% | 208 | filter(grepl("!Sample",X1))%>% |
| 191 | filter(!grepl("!Sample_contact",X1)) | 209 | filter(!grepl("!Sample_contact",X1)) |
| 192 | 210 | ||
| 193 | #Getting the GPL file | 211 | #Getting the GPL file |
| 194 | genena <- grep("_platform_id",alzword$X1) %>% | 212 | genena <- grep("_platform_id",alzword$X1) %>% |
| 195 | alzword$X2[.] %>% | 213 | alzword$X2[.] %>% |
| 196 | str_trim(.) %>% | 214 | str_trim(.) %>% |
| 197 | paste0("^",.,"\\D") %>% | 215 | paste0("^",.,"\\D") %>% |
| 198 | grep(.,list.files()) %>% | 216 | grep(.,list.files()) %>% |
| 199 | list.files()[.] | 217 | list.files()[.] |
| 200 | 218 | ||
| 201 | #Find out if it is a soft GPL file or not | 219 | #Find out if it is a soft GPL file or not |
| 202 | soft <- strsplit(genena,"[\\|/]") %>% | 220 | soft <- strsplit(genena,"[\\|/]") %>% |
| 203 | .[[1]] %>% | 221 | .[[1]] %>% |
| 204 | .[length(.)] %>% | 222 | .[length(.)] %>% |
| 205 | grepl("soft",.) | 223 | grepl("soft",.) |
| 206 | 224 | ||
| 207 | ##Changing row names and column names: | 225 | ##Changing row names and column names: |
| 208 | ALZWORD <- t(alzword) | 226 | ALZWORD <- t(alzword) |
| 209 | rownames(ALZWORD)=NULL | 227 | rownames(ALZWORD)=NULL |
| 210 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 228 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
| 211 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 229 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
| 212 | ALZWORD <- ALZWORD%>% | 230 | ALZWORD <- ALZWORD%>% |
| 213 | as.data.frame()%>% | 231 | as.data.frame()%>% |
| 214 | dplyr::select(-starts_with("col")) | 232 | dplyr::select(-starts_with("col")) |
| 215 | 233 | ||
| 216 | ##Reorganizing information within the columns and final clinical data | 234 | ##Reorganizing information within the columns and final clinical data |
| 217 | ALZWORDF <- cinfo(ALZWORD) | 235 | ALZWORDF <- cinfo(ALZWORD) |
| 218 | 236 | ||
| 219 | 237 | ||
| 220 | #Working with Actual Data part of file | 238 | #Working with Actual Data part of file |
| 221 | alzdat <- alz %>% | 239 | alzdat <- alz %>% |
| 222 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 240 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
| 223 | ALZDAT <- t(alzdat[,-1]) | 241 | ALZDAT <- t(alzdat[,-1]) |
| 224 | rownames(ALZDAT)=NULL | 242 | rownames(ALZDAT)=NULL |
| 225 | 243 | ||
| 226 | ##Is there a clean version of the GPL file available? | 244 | ##Is there a clean version of the GPL file available? |
| 227 | gplnum <- strsplit(genena,"[\\|/]") %>% | 245 | gplnum <- strsplit(genena,"[\\|/]") %>% |
| 228 | .[[1]] %>% | 246 | .[[1]] %>% |
| 229 | .[length(.)] %>% | 247 | .[length(.)] %>% |
| 230 | gsub("\\D","",.) | 248 | gsub("\\D","",.) |
| 231 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 249 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
| 232 | if(clfileex >= 1){ | 250 | if(clfileex >= 1){ |
| 233 | #use the clean version | 251 | #use the clean version |
| 234 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 252 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
| 235 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 253 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
| 236 | 254 | ||
| 237 | } | 255 | } |
| 238 | else if(clfileex == 0){ | 256 | else if(clfileex == 0){ |
| 239 | ##Lets Create a clean version | 257 | ##Lets Create a clean version |
| 240 | 258 | ||
| 241 | ##Gene ID to Gene Name | 259 | ##Gene ID to Gene Name |
| 242 | if(soft == TRUE){ | 260 | if(soft == TRUE){ |
| 243 | #Check to see if there is already a file containing information on soft files | 261 | #Check to see if there is already a file containing information on soft files |
| 244 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 262 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
| 245 | if(fileex == 1){ | 263 | if(fileex == 1){ |
| 246 | #Check to see if this GPL soft file has been used before | 264 | #Check to see if this GPL soft file has been used before |
| 247 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 265 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 248 | .$GPL_FILE_NUM%>% | 266 | .$GPL_FILE_NUM%>% |
| 249 | grepl(gplnum,.) %>% | 267 | grepl(gplnum,.) %>% |
| 250 | sum() | 268 | sum() |
| 251 | if(IDF == 1){ | 269 | if(IDF == 1){ |
| 252 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 270 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 253 | .$GPL_FILE_NUM%>% | 271 | .$GPL_FILE_NUM%>% |
| 254 | grep(gplnum,.) | 272 | grep(gplnum,.) |
| 255 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 273 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 256 | .$LOC_ID %>% | 274 | .$LOC_ID %>% |
| 257 | .[IDLOCAL] | 275 | .[IDLOCAL] |
| 258 | geneIDNam <- genena %>% | 276 | geneIDNam <- genena %>% |
| 259 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 277 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
| 260 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 278 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
| 261 | } | 279 | } |
| 262 | else if(IDF == 0){ | 280 | else if(IDF == 0){ |
| 263 | #No information on this particular GPL file | 281 | #No information on this particular GPL file |
| 264 | idLOCGPL <- genena %>% | 282 | idLOCGPL <- genena %>% |
| 265 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 283 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
| 266 | t(.) %>% | 284 | t(.) %>% |
| 267 | grep("^ID\\s*$",.) %>% | 285 | grep("^ID\\s*$",.) %>% |
| 268 | -1 | 286 | -1 |
| 269 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 287 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
| 270 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 288 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
| 271 | geneIDNam <- genena %>% | 289 | geneIDNam <- genena %>% |
| 272 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 290 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
| 273 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 291 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
| 274 | } | 292 | } |
| 275 | } | 293 | } |
| 276 | else if(fileex == 0){ | 294 | else if(fileex == 0){ |
| 277 | #We must create a file that we can access for later use | 295 | #We must create a file that we can access for later use |
| 278 | idLOCGPL <- genena %>% | 296 | idLOCGPL <- genena %>% |
| 279 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 297 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
| 280 | t(.) %>% | 298 | t(.) %>% |
| 281 | grep("^ID\\s*$",.) %>% | 299 | grep("^ID\\s*$",.) %>% |
| 282 | -1 | 300 | -1 |
| 283 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 301 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
| 284 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 302 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
| 285 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 303 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
| 286 | geneIDNam <- genena %>% | 304 | geneIDNam <- genena %>% |
| 287 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 305 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
| 288 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 306 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
| 289 | } | 307 | } |
| 290 | } | 308 | } |
| 291 | else if(soft == FALSE){ | 309 | else if(soft == FALSE){ |
| 292 | geneIDNam <- genena %>% | 310 | geneIDNam <- genena %>% |
| 293 | read_delim(delim="\t",comment = "#")%>% | 311 | read_delim(delim="\t",comment = "#")%>% |
| 294 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 312 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
| 295 | } | 313 | } |
| 296 | 314 | ||
| 297 | ##Labeling the gene IDs without names | 315 | ##Labeling the gene IDs without names |
| 298 | geneIDNam <- NAFIXING(geneIDNam) | 316 | geneIDNam <- NAFIXING(geneIDNam) |
| 299 | 317 | ||
| 300 | ##remove the whitespace | 318 | ##remove the whitespace |
| 301 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 319 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
| 302 | 320 | ||
| 303 | ##Here is the clean version | 321 | ##Here is the clean version |
| 304 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 322 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
| 305 | } | 323 | } |
| 306 | 324 | ||
| 307 | 325 | ||
| 308 | 326 | ||
| 309 | ##Changing the gene ID to gene name | 327 | ##Changing the gene ID to gene name |
| 310 | ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat)) | 328 | ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat)) |
| 311 | colnames(ALZDAT) = ALZDAT1[1,] | 329 | colnames(ALZDAT) = ALZDAT1[1,] |
| 312 | 330 | ||
| 313 | 331 | ||
| 314 | ##Adjusting the column names aka the gene names | 332 | ##Adjusting the column names aka the gene names |
| 315 | colnames(ALZDAT) <- gcnames(ALZDAT) | 333 | colnames(ALZDAT) <- gcnames(ALZDAT) |
| 316 | 334 | ||
| 317 | 335 | ||
| 318 | #Full RAW Data | 336 | #Full RAW Data |
| 319 | Fullalzdwr <- ALZDAT %>% | 337 | Fullalzdwr <- ALZDAT %>% |
| 320 | as.data.frame() %>% | 338 | as.data.frame() %>% |
| 321 | cbind(ALZWORDF,.) | 339 | cbind(ALZWORDF,.) |
| 322 | 340 | ||
| 323 | #Raw file is output | 341 | #Raw file is output |
| 324 | nfnaex <- strsplit(alz,"[\\]") %>% | 342 | nfnaex <- strsplit(alz,"[\\]") %>% |
| 325 | .[[1]] %>% | 343 | .[[1]] %>% |
| 326 | .[length(.)] %>% | 344 | .[length(.)] %>% |
| 327 | gsub("\\D","",.) %>% | 345 | gsub("\\D","",.) %>% |
| 328 | c("GSE",.,"aftexcel.txt") %>% | 346 | c("GSE",.,"aftexcel.txt") %>% |
| 329 | paste(collapse = "") | 347 | paste(collapse = "") |
| 330 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 348 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
| 331 | 349 | ||
| 332 | 350 | ||
| 333 | 351 | ||
| 334 | #Now for the discretization part | 352 | #Now for the discretization part |
| 335 | ##get the wordy part again | 353 | ##get the wordy part again |
| 336 | rawword <- t(ALZWORDF) | 354 | rawword <- t(ALZWORDF) |
| 337 | 355 | ||
| 338 | ##where is ID_REF located | 356 | ##where is ID_REF located |
| 339 | hereim <- grep("ID_REF",rownames(rawword)) | 357 | hereim <- grep("ID_REF",rownames(rawword)) |
| 340 | 358 | ||
| 341 | ##Subject Names GSM... | 359 | ##Subject Names GSM... |
| 342 | subjnam <- rawword[hereim,] | 360 | subjnam <- rawword[hereim,] |
| 343 | 361 | ||
| 344 | ##Getting the names for the rows | 362 | ##Getting the names for the rows |
| 345 | namedarows <- rownames(rawword)[-hereim] %>% | 363 | namedarows <- rownames(rawword)[-hereim] %>% |
| 346 | as.data.frame() | 364 | as.data.frame() |
| 347 | RAWWORD <- rawword[-hereim,] %>% | 365 | RAWWORD <- rawword[-hereim,] %>% |
| 348 | as.data.frame() %>% | 366 | as.data.frame() %>% |
| 349 | bind_cols(namedarows,.) | 367 | bind_cols(namedarows,.) |
| 350 | z <- 1 | 368 | z <- 1 |
| 351 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 369 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
| 352 | for(z in 1:dim(RAWWORD)[1]){ | 370 | for(z in 1:dim(RAWWORD)[1]){ |
| 353 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 371 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
| 354 | z <- z + 1 | 372 | z <- z + 1 |
| 355 | } | 373 | } |
| 356 | 374 | ||
| 357 | colnames(naroww) <- "ROW_NAs" | 375 | colnames(naroww) <- "ROW_NAs" |
| 358 | RAWWORD <- bind_cols(RAWWORD,naroww) | 376 | RAWWORD <- bind_cols(RAWWORD,naroww) |
| 359 | 377 | ||
| 360 | 378 | ||
| 361 | roALZna <- t(ALZDAT) %>% | 379 | roALZna <- t(ALZDAT) %>% |
| 362 | rownames(.) %>% | 380 | rownames(.) %>% |
| 363 | as.data.frame(.) | 381 | as.data.frame(.) |
| 364 | colnames(roALZna) <- "ID_REF" | 382 | colnames(roALZna) <- "ID_REF" |
| 365 | 383 | ||
| 366 | RAWDAT <- t(ALZDAT) %>% | 384 | RAWDAT <- t(ALZDAT) %>% |
| 367 | as.data.frame(.) | 385 | as.data.frame(.) |
| 368 | colnames(RAWDAT) <- NULL | 386 | colnames(RAWDAT) <- NULL |
| 369 | rownames(RAWDAT) <- NULL | 387 | rownames(RAWDAT) <- NULL |
| 370 | 388 | ||
| 371 | RAWDAT2 <- RAWDAT %>% | 389 | RAWDAT2 <- RAWDAT %>% |
| 372 | cbind(roALZna,.) %>% | 390 | cbind(roALZna,.) %>% |
| 373 | dplyr::arrange(.,ID_REF) | 391 | dplyr::arrange(.,ID_REF) |
| 374 | 392 | ||
| 375 | ##Editing the file for R processing | 393 | ##Editing the file for R processing |
| 376 | RAWDATID <- RAWDAT2[,1] %>% | 394 | RAWDATID <- RAWDAT2[,1] %>% |
| 377 | as.matrix(.) | 395 | as.matrix(.) |
| 378 | 396 | ||
| 379 | RAWDATNUM <- RAWDAT2[,-1] %>% | 397 | RAWDATNUM <- RAWDAT2[,-1] %>% |
| 380 | mapply(.,FUN = as.numeric) %>% | 398 | mapply(.,FUN = as.numeric) %>% |
| 381 | t(.) | 399 | t(.) |
| 382 | 400 | ||
| 383 | ##Consolidating genes with the same name | 401 | ##Consolidating genes with the same name |
| 384 | ###create empty matrix of size equal to tabRDATID | 402 | ###create empty matrix of size equal to tabRDATID |
| 385 | tabRDATID <- table(RAWDATID) | 403 | tabRDATID <- table(RAWDATID) |
| 386 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 404 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
| 387 | j <- 1 | 405 | j <- 1 |
| 388 | for(j in 1:length(tabRDATID)){ | 406 | for(j in 1:length(tabRDATID)){ |
| 389 | ##Putting the ones without duplicates in their new homes | 407 | ##Putting the ones without duplicates in their new homes |
| 390 | if(tabRDATID[j] == 1){ | 408 | if(tabRDATID[j] == 1){ |
| 391 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 409 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
| 392 | } | 410 | } |
| 393 | ##Averaging duplicates and putting them in their new homes | 411 | ##Averaging duplicates and putting them in their new homes |
| 394 | else if(tabRDATID[j] > 1){ | 412 | else if(tabRDATID[j] > 1){ |
| 395 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 413 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
| 396 | } | 414 | } |
| 397 | j <- j + 1 | 415 | j <- j + 1 |
| 398 | } | 416 | } |
| 399 | 417 | ||
| 400 | ##Scaling the Data | 418 | ##Scaling the Data |
| 401 | scrawdat <- NuRDATN%>% | 419 | scrawdat <- NuRDATN%>% |
| 402 | scale() | 420 | scale() |
| 403 | attr(scrawdat,"scaled:center") <- NULL | 421 | attr(scrawdat,"scaled:center") <- NULL |
| 404 | attr(scrawdat,"scaled:scale") <- NULL | 422 | attr(scrawdat,"scaled:scale") <- NULL |
| 405 | colnames(scrawdat) <- rownames(tabRDATID) | 423 | colnames(scrawdat) <- rownames(tabRDATID) |
| 406 | 424 | ||
| 407 | ##Discretized the Data | 425 | ##Discretized the Data |
| 408 | dialzdat <- scrawdat %>% | 426 | dialzdat <- scrawdat %>% |
| 409 | dndat(.) %>% | 427 | dndat(.) %>% |
| 410 | t()%>% | 428 | t()%>% |
| 411 | as.data.frame(.) | 429 | as.data.frame(.) |
| 412 | colnames(dialzdat) <- rownames(RAWDATNUM) | 430 | colnames(dialzdat) <- rownames(RAWDATNUM) |
| 413 | 431 | ||
| 414 | ##setting "ID_REF" as a new variable | 432 | ##setting "ID_REF" as a new variable |
| 415 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) | 433 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) |
| 416 | colnames(geneNAM) <- "ID_REF" | 434 | colnames(geneNAM) <- "ID_REF" |
| 417 | rownames(dialzdat) <- NULL | 435 | rownames(dialzdat) <- NULL |
| 418 | dialzdat <-bind_cols(geneNAM,dialzdat) | 436 | dialzdat <-bind_cols(geneNAM,dialzdat) |
| 419 | 437 | ||
| 420 | ##NAs in a column | 438 | ##NAs in a column |
| 421 | x <- 2 | 439 | x <- 2 |
| 422 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 440 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
| 423 | nacol[1,1] = "COL_NAs" | 441 | nacol[1,1] = "COL_NAs" |
| 424 | for(x in 2:dim(dialzdat)[2]){ | 442 | for(x in 2:dim(dialzdat)[2]){ |
| 425 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 443 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
| 426 | x <- x + 1 | 444 | x <- x + 1 |
| 427 | } | 445 | } |
| 428 | colnames(nacol) <- colnames(dialzdat) | 446 | colnames(nacol) <- colnames(dialzdat) |
| 429 | dialzdat <- bind_rows(dialzdat,nacol) | 447 | dialzdat <- bind_rows(dialzdat,nacol) |
| 430 | 448 | ||
| 431 | ##NAs in a row | 449 | ##NAs in a row |
| 432 | y <- 1 | 450 | y <- 1 |
| 433 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 451 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
| 434 | for(y in 1:dim(dialzdat)[1]){ | 452 | for(y in 1:dim(dialzdat)[1]){ |
| 435 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 453 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
| 436 | y <- y + 1 | 454 | y <- y + 1 |
| 437 | } | 455 | } |
| 438 | colnames(narowd) <- "ROW_NAs" | 456 | colnames(narowd) <- "ROW_NAs" |
| 439 | dialzdat <- bind_cols(dialzdat,narowd) | 457 | dialzdat <- bind_cols(dialzdat,narowd) |
| 440 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 458 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
| 441 | colnames(RAWWORD) <- colnames(dialzdat) | 459 | colnames(RAWWORD) <- colnames(dialzdat) |
| 442 | ##converting to character so that the clinical can be brought together with discrete data | 460 | ##converting to character so that the clinical can be brought together with discrete data |
| 443 | k <- 2 | 461 | k <- 2 |
| 444 | for(k in 2:dim(dialzdat)[2]-1){ | 462 | for(k in 2:dim(dialzdat)[2]-1){ |
| 445 | dialzdat[,k] <- as.character(dialzdat[,k]) | 463 | dialzdat[,k] <- as.character(dialzdat[,k]) |
| 446 | k <- k + 1 | 464 | k <- k + 1 |
| 447 | } | 465 | } |
| 448 | #The End the full data | 466 | #The End the full data |
| 449 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 467 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
| 450 | 468 | ||
| 451 | #Produces Discrete file | 469 | #Produces Discrete file |
| 452 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 470 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
| 453 | .[[1]] %>% | 471 | .[[1]] %>% |
| 454 | .[length(.)] %>% | 472 | .[length(.)] %>% |
| 455 | gsub("\\D","",.) %>% | 473 | gsub("\\D","",.) %>% |
| 456 | c("GSE",.,"dscrt.txt") %>% | 474 | c("GSE",.,"dscrt.txt") %>% |
| 457 | paste(collapse = "") | 475 | paste(collapse = "") |
| 458 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 476 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
| 459 | n <- n +1 | 477 | n <- n +1 |
| 460 | } | 478 | } |
| 461 | } | 479 | } |
| 462 | 480 | ||
| 463 | #CHOOSE A DATA FILE TO CLEAN OR SEVERAL DATA FILES TO CLEAN | 481 | #CHOOSE A DATA FILE TO CLEAN OR SEVERAL DATA FILES TO CLEAN |
| 464 | else if(numDAT == 2){ | 482 | else if(numDAT == 2){ |
| 465 | #All the files you want to analyze | 483 | #All the files you want to analyze |
| 466 | ANDIS <- select.list(choices = list.files()[GSEfileloc],multiple = TRUE, title = "Choose the file/files you want to analyze:") | 484 | ANDIS <- select.list(choices = list.files()[GSEfileloc],multiple = TRUE, title = "Choose the file/files you want to analyze:") |
| 467 | if(length(ANDIS) == 0){ | 485 | if(length(ANDIS) == 0){ |
| 468 | #Spit out a warning | 486 | #Spit out a warning |
| 469 | warning("You did not select any files and so no cleaning will be performed") | 487 | warning("You did not select any files and so no cleaning will be performed") |
| 470 | } else{ | 488 | } else{ |
| 471 | #indexing the data files | 489 | #indexing the data files |
| 472 | n <- 1 | 490 | n <- 1 |
| 473 | for(n in 1: length(ANDIS)){ | 491 | for(n in 1: length(ANDIS)){ |
| 474 | alz <- ANDIS[n] | 492 | alz <- ANDIS[n] |
| 475 | 493 | ||
| 476 | #Working with the wordy part of the document | 494 | #Working with the wordy part of the document |
| 477 | alzword <- alz %>% | 495 | alzword <- alz %>% |
| 478 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 496 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
| 479 | filter(grepl("!Sample",X1))%>% | 497 | filter(grepl("!Sample",X1))%>% |
| 480 | filter(!grepl("!Sample_contact",X1)) | 498 | filter(!grepl("!Sample_contact",X1)) |
| 481 | 499 | ||
| 482 | #Getting the GPL file | 500 | #Getting the GPL file |
| 483 | genena <- grep("_platform_id",alzword$X1) %>% | 501 | genena <- grep("_platform_id",alzword$X1) %>% |
| 484 | alzword$X2[.] %>% | 502 | alzword$X2[.] %>% |
| 485 | str_trim(.) %>% | 503 | str_trim(.) %>% |
| 486 | paste0("^",.,"\\D") %>% | 504 | paste0("^",.,"\\D") %>% |
| 487 | grep(.,list.files()) %>% | 505 | grep(.,list.files()) %>% |
| 488 | list.files()[.] | 506 | list.files()[.] |
| 489 | 507 | ||
| 490 | #Find out if it is a soft GPL file or not | 508 | #Find out if it is a soft GPL file or not |
| 491 | soft <- strsplit(genena,"[\\|/]") %>% | 509 | soft <- strsplit(genena,"[\\|/]") %>% |
| 492 | .[[1]] %>% | 510 | .[[1]] %>% |
| 493 | .[length(.)] %>% | 511 | .[length(.)] %>% |
| 494 | grepl("soft",.) | 512 | grepl("soft",.) |
| 495 | 513 | ||
| 496 | ##Changing row names and column names: | 514 | ##Changing row names and column names: |
| 497 | ALZWORD <- t(alzword) | 515 | ALZWORD <- t(alzword) |
| 498 | rownames(ALZWORD)=NULL | 516 | rownames(ALZWORD)=NULL |
| 499 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 517 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
| 500 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 518 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
| 501 | ALZWORD <- ALZWORD%>% | 519 | ALZWORD <- ALZWORD%>% |
| 502 | as.data.frame()%>% | 520 | as.data.frame()%>% |
| 503 | dplyr::select(-starts_with("col")) | 521 | dplyr::select(-starts_with("col")) |
| 504 | 522 | ||
| 505 | ##Reorganizing information within the columns and final clinical data | 523 | ##Reorganizing information within the columns and final clinical data |
| 506 | ALZWORDF <- cinfo(ALZWORD) | 524 | ALZWORDF <- cinfo(ALZWORD) |
| 507 | 525 | ||
| 508 | 526 | ||
| 509 | #Working with Actual Data part of file | 527 | #Working with Actual Data part of file |
| 510 | alzdat <- alz %>% | 528 | alzdat <- alz %>% |
| 511 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 529 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
| 512 | ALZDAT <- t(alzdat[,-1]) | 530 | ALZDAT <- t(alzdat[,-1]) |
| 513 | rownames(ALZDAT)=NULL | 531 | rownames(ALZDAT)=NULL |
| 514 | 532 | ||
| 515 | ##Is there a clean version of the GPL file available? | 533 | ##Is there a clean version of the GPL file available? |
| 516 | gplnum <- strsplit(genena,"[\\|/]") %>% | 534 | gplnum <- strsplit(genena,"[\\|/]") %>% |
| 517 | .[[1]] %>% | 535 | .[[1]] %>% |
| 518 | .[length(.)] %>% | 536 | .[length(.)] %>% |
| 519 | gsub("\\D","",.) | 537 | gsub("\\D","",.) |
| 520 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 538 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
| 521 | if(clfileex >= 1){ | 539 | if(clfileex >= 1){ |
| 522 | #use the clean version | 540 | #use the clean version |
| 523 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 541 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
| 524 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 542 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
| 525 | 543 | ||
| 526 | } | 544 | } |
| 527 | else if(clfileex == 0){ | 545 | else if(clfileex == 0){ |
| 528 | ##Lets Create a clean version | 546 | ##Lets Create a clean version |
| 529 | 547 | ||
| 530 | ##Gene ID to Gene Name | 548 | ##Gene ID to Gene Name |
| 531 | if(soft == TRUE){ | 549 | if(soft == TRUE){ |
| 532 | #Check to see if there is already a file containing information on soft files | 550 | #Check to see if there is already a file containing information on soft files |
| 533 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 551 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
| 534 | if(fileex == 1){ | 552 | if(fileex == 1){ |
| 535 | #Check to see if this GPL soft file has been used before | 553 | #Check to see if this GPL soft file has been used before |
| 536 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 554 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 537 | .$GPL_FILE_NUM%>% | 555 | .$GPL_FILE_NUM%>% |
| 538 | grepl(gplnum,.) %>% | 556 | grepl(gplnum,.) %>% |
| 539 | sum() | 557 | sum() |
| 540 | if(IDF == 1){ | 558 | if(IDF == 1){ |
| 541 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 559 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 542 | .$GPL_FILE_NUM%>% | 560 | .$GPL_FILE_NUM%>% |
| 543 | grep(gplnum,.) | 561 | grep(gplnum,.) |
| 544 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 562 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 545 | .$LOC_ID %>% | 563 | .$LOC_ID %>% |
| 546 | .[IDLOCAL] | 564 | .[IDLOCAL] |
| 547 | geneIDNam <- genena %>% | 565 | geneIDNam <- genena %>% |
| 548 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 566 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
| 549 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 567 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
| 550 | } | 568 | } |
| 551 | else if(IDF == 0){ | 569 | else if(IDF == 0){ |
| 552 | #No information on this particular GPL file | 570 | #No information on this particular GPL file |
| 553 | idLOCGPL <- genena %>% | 571 | idLOCGPL <- genena %>% |
| 554 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 572 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
| 555 | t(.) %>% | 573 | t(.) %>% |
| 556 | grep("^ID\\s*$",.) %>% | 574 | grep("^ID\\s*$",.) %>% |
| 557 | -1 | 575 | -1 |
| 558 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 576 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
| 559 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 577 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
| 560 | geneIDNam <- genena %>% | 578 | geneIDNam <- genena %>% |
| 561 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 579 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
| 562 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 580 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
| 563 | } | 581 | } |
| 564 | } | 582 | } |
| 565 | else if(fileex == 0){ | 583 | else if(fileex == 0){ |
| 566 | #We must create a file that we can access for later use | 584 | #We must create a file that we can access for later use |
| 567 | idLOCGPL <- genena %>% | 585 | idLOCGPL <- genena %>% |
| 568 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 586 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
| 569 | t(.) %>% | 587 | t(.) %>% |
| 570 | grep("^ID\\s*$",.) %>% | 588 | grep("^ID\\s*$",.) %>% |
| 571 | -1 | 589 | -1 |
| 572 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 590 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
| 573 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 591 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
| 574 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 592 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
| 575 | geneIDNam <- genena %>% | 593 | geneIDNam <- genena %>% |
| 576 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 594 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
| 577 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 595 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
| 578 | } | 596 | } |
| 579 | } | 597 | } |
| 580 | else if(soft == FALSE){ | 598 | else if(soft == FALSE){ |
| 581 | geneIDNam <- genena %>% | 599 | geneIDNam <- genena %>% |
| 582 | read_delim(delim="\t",comment = "#")%>% | 600 | read_delim(delim="\t",comment = "#")%>% |
| 583 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 601 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
| 584 | } | 602 | } |
| 585 | 603 | ||
| 586 | ##Labeling the gene IDs without names | 604 | ##Labeling the gene IDs without names |
| 587 | geneIDNam <- NAFIXING(geneIDNam) | 605 | geneIDNam <- NAFIXING(geneIDNam) |
| 588 | 606 | ||
| 589 | ##remove the whitespace | 607 | ##remove the whitespace |
| 590 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 608 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
| 591 | 609 | ||
| 592 | ##Here is the clean version | 610 | ##Here is the clean version |
| 593 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 611 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
| 594 | } | 612 | } |
| 595 | 613 | ||
| 596 | 614 | ||
| 597 | 615 | ||
| 598 | ##Changing the gene ID to gene name | 616 | ##Changing the gene ID to gene name |
| 599 | ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat)) | 617 | ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat)) |
| 600 | colnames(ALZDAT) = ALZDAT1[1,] | 618 | colnames(ALZDAT) = ALZDAT1[1,] |
| 601 | 619 | ||
| 602 | 620 | ||
| 603 | ##Adjusting the column names aka the gene names | 621 | ##Adjusting the column names aka the gene names |
| 604 | colnames(ALZDAT) <- gcnames(ALZDAT) | 622 | colnames(ALZDAT) <- gcnames(ALZDAT) |
| 605 | 623 | ||
| 606 | 624 | ||
| 607 | #Full RAW Data | 625 | #Full RAW Data |
| 608 | Fullalzdwr <- ALZDAT %>% | 626 | Fullalzdwr <- ALZDAT %>% |
| 609 | as.data.frame() %>% | 627 | as.data.frame() %>% |
| 610 | cbind(ALZWORDF,.) | 628 | cbind(ALZWORDF,.) |
| 611 | 629 | ||
| 612 | #Raw file is output | 630 | #Raw file is output |
| 613 | nfnaex <- strsplit(alz,"[\\]") %>% | 631 | nfnaex <- strsplit(alz,"[\\]") %>% |
| 614 | .[[1]] %>% | 632 | .[[1]] %>% |
| 615 | .[length(.)] %>% | 633 | .[length(.)] %>% |
| 616 | gsub("\\D","",.) %>% | 634 | gsub("\\D","",.) %>% |
| 617 | c("GSE",.,"aftexcel.txt") %>% | 635 | c("GSE",.,"aftexcel.txt") %>% |
| 618 | paste(collapse = "") | 636 | paste(collapse = "") |
| 619 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 637 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
| 620 | 638 | ||
| 621 | 639 | ||
| 622 | 640 | ||
| 623 | #Now for the discretization part | 641 | #Now for the discretization part |
| 624 | ##get the wordy part again | 642 | ##get the wordy part again |
| 625 | rawword <- t(ALZWORDF) | 643 | rawword <- t(ALZWORDF) |
| 626 | 644 | ||
| 627 | ##where is ID_REF located | 645 | ##where is ID_REF located |
| 628 | hereim <- grep("ID_REF",rownames(rawword)) | 646 | hereim <- grep("ID_REF",rownames(rawword)) |
| 629 | 647 | ||
| 630 | ##Subject Names GSM... | 648 | ##Subject Names GSM... |
| 631 | subjnam <- rawword[hereim,] | 649 | subjnam <- rawword[hereim,] |
| 632 | 650 | ||
| 633 | ##Getting the names for the rows | 651 | ##Getting the names for the rows |
| 634 | namedarows <- rownames(rawword)[-hereim] %>% | 652 | namedarows <- rownames(rawword)[-hereim] %>% |
| 635 | as.data.frame() | 653 | as.data.frame() |
| 636 | RAWWORD <- rawword[-hereim,] %>% | 654 | RAWWORD <- rawword[-hereim,] %>% |
| 637 | as.data.frame() %>% | 655 | as.data.frame() %>% |
| 638 | bind_cols(namedarows,.) | 656 | bind_cols(namedarows,.) |
| 639 | z <- 1 | 657 | z <- 1 |
| 640 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 658 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
| 641 | for(z in 1:dim(RAWWORD)[1]){ | 659 | for(z in 1:dim(RAWWORD)[1]){ |
| 642 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 660 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
| 643 | z <- z + 1 | 661 | z <- z + 1 |
| 644 | } | 662 | } |
| 645 | 663 | ||
| 646 | colnames(naroww) <- "ROW_NAs" | 664 | colnames(naroww) <- "ROW_NAs" |
| 647 | RAWWORD <- bind_cols(RAWWORD,naroww) | 665 | RAWWORD <- bind_cols(RAWWORD,naroww) |
| 648 | 666 | ||
| 649 | 667 | ||
| 650 | roALZna <- t(ALZDAT) %>% | 668 | roALZna <- t(ALZDAT) %>% |
| 651 | rownames(.) %>% | 669 | rownames(.) %>% |
| 652 | as.data.frame(.) | 670 | as.data.frame(.) |
| 653 | colnames(roALZna) <- "ID_REF" | 671 | colnames(roALZna) <- "ID_REF" |
| 654 | 672 | ||
| 655 | RAWDAT <- t(ALZDAT) %>% | 673 | RAWDAT <- t(ALZDAT) %>% |
| 656 | as.data.frame(.) | 674 | as.data.frame(.) |
| 657 | colnames(RAWDAT) <- NULL | 675 | colnames(RAWDAT) <- NULL |
| 658 | rownames(RAWDAT) <- NULL | 676 | rownames(RAWDAT) <- NULL |
| 659 | 677 | ||
| 660 | RAWDAT2 <- RAWDAT %>% | 678 | RAWDAT2 <- RAWDAT %>% |
| 661 | cbind(roALZna,.) %>% | 679 | cbind(roALZna,.) %>% |
| 662 | dplyr::arrange(.,ID_REF) | 680 | dplyr::arrange(.,ID_REF) |
| 663 | 681 | ||
| 664 | ##Editing the file for R processing | 682 | ##Editing the file for R processing |
| 665 | RAWDATID <- RAWDAT2[,1] %>% | 683 | RAWDATID <- RAWDAT2[,1] %>% |
| 666 | as.matrix(.) | 684 | as.matrix(.) |
| 667 | 685 | ||
| 668 | RAWDATNUM <- RAWDAT2[,-1] %>% | 686 | RAWDATNUM <- RAWDAT2[,-1] %>% |
| 669 | mapply(.,FUN = as.numeric) %>% | 687 | mapply(.,FUN = as.numeric) %>% |
| 670 | t(.) | 688 | t(.) |
| 671 | 689 | ||
| 672 | ##Consolidating genes with the same name | 690 | ##Consolidating genes with the same name |
| 673 | ###create empty matrix of size equal to tabRDATID | 691 | ###create empty matrix of size equal to tabRDATID |
| 674 | tabRDATID <- table(RAWDATID) | 692 | tabRDATID <- table(RAWDATID) |
| 675 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 693 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
| 676 | j <- 1 | 694 | j <- 1 |
| 677 | for(j in 1:length(tabRDATID)){ | 695 | for(j in 1:length(tabRDATID)){ |
| 678 | ##Putting the ones without duplicates in their new homes | 696 | ##Putting the ones without duplicates in their new homes |
| 679 | if(tabRDATID[j] == 1){ | 697 | if(tabRDATID[j] == 1){ |
| 680 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 698 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
| 681 | } | 699 | } |
| 682 | ##Averaging duplicates and putting them in their new homes | 700 | ##Averaging duplicates and putting them in their new homes |
| 683 | else if(tabRDATID[j] > 1){ | 701 | else if(tabRDATID[j] > 1){ |
| 684 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 702 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
| 685 | } | 703 | } |
| 686 | j <- j + 1 | 704 | j <- j + 1 |
| 687 | } | 705 | } |
| 688 | 706 | ||
| 689 | ##Scaling the Data | 707 | ##Scaling the Data |
| 690 | scrawdat <- NuRDATN%>% | 708 | scrawdat <- NuRDATN%>% |
| 691 | scale() | 709 | scale() |
| 692 | attr(scrawdat,"scaled:center") <- NULL | 710 | attr(scrawdat,"scaled:center") <- NULL |
| 693 | attr(scrawdat,"scaled:scale") <- NULL | 711 | attr(scrawdat,"scaled:scale") <- NULL |
| 694 | colnames(scrawdat) <- rownames(tabRDATID) | 712 | colnames(scrawdat) <- rownames(tabRDATID) |
| 695 | 713 | ||
| 696 | ##Discretized the Data | 714 | ##Discretized the Data |
| 697 | dialzdat <- scrawdat %>% | 715 | dialzdat <- scrawdat %>% |
| 698 | dndat(.) %>% | 716 | dndat(.) %>% |
| 699 | t()%>% | 717 | t()%>% |
| 700 | as.data.frame(.) | 718 | as.data.frame(.) |
| 701 | colnames(dialzdat) <- rownames(RAWDATNUM) | 719 | colnames(dialzdat) <- rownames(RAWDATNUM) |
| 702 | 720 | ||
| 703 | ##setting "ID_REF" as a new variable | 721 | ##setting "ID_REF" as a new variable |
| 704 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) | 722 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) |
| 705 | colnames(geneNAM) <- "ID_REF" | 723 | colnames(geneNAM) <- "ID_REF" |
| 706 | rownames(dialzdat) <- NULL | 724 | rownames(dialzdat) <- NULL |
| 707 | dialzdat <-bind_cols(geneNAM,dialzdat) | 725 | dialzdat <-bind_cols(geneNAM,dialzdat) |
| 708 | 726 | ||
| 709 | ##NAs in a column | 727 | ##NAs in a column |
| 710 | x <- 2 | 728 | x <- 2 |
| 711 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 729 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
| 712 | nacol[1,1] = "COL_NAs" | 730 | nacol[1,1] = "COL_NAs" |
| 713 | for(x in 2:dim(dialzdat)[2]){ | 731 | for(x in 2:dim(dialzdat)[2]){ |
| 714 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 732 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
| 715 | x <- x + 1 | 733 | x <- x + 1 |
| 716 | } | 734 | } |
| 717 | colnames(nacol) <- colnames(dialzdat) | 735 | colnames(nacol) <- colnames(dialzdat) |
| 718 | dialzdat <- bind_rows(dialzdat,nacol) | 736 | dialzdat <- bind_rows(dialzdat,nacol) |
| 719 | 737 | ||
| 720 | ##NAs in a row | 738 | ##NAs in a row |
| 721 | y <- 1 | 739 | y <- 1 |
| 722 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 740 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
| 723 | for(y in 1:dim(dialzdat)[1]){ | 741 | for(y in 1:dim(dialzdat)[1]){ |
| 724 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 742 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
| 725 | y <- y + 1 | 743 | y <- y + 1 |
| 726 | } | 744 | } |
| 727 | colnames(narowd) <- "ROW_NAs" | 745 | colnames(narowd) <- "ROW_NAs" |
| 728 | dialzdat <- bind_cols(dialzdat,narowd) | 746 | dialzdat <- bind_cols(dialzdat,narowd) |
| 729 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 747 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
| 730 | colnames(RAWWORD) <- colnames(dialzdat) | 748 | colnames(RAWWORD) <- colnames(dialzdat) |
| 731 | ##converting to character so that the clinical can be brought together with discrete data | 749 | ##converting to character so that the clinical can be brought together with discrete data |
| 732 | k <- 2 | 750 | k <- 2 |
| 733 | for(k in 2:dim(dialzdat)[2]-1){ | 751 | for(k in 2:dim(dialzdat)[2]-1){ |
| 734 | dialzdat[,k] <- as.character(dialzdat[,k]) | 752 | dialzdat[,k] <- as.character(dialzdat[,k]) |
| 735 | k <- k + 1 | 753 | k <- k + 1 |
| 736 | } | 754 | } |
| 737 | #The End the full data | 755 | #The End the full data |
| 738 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 756 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
| 739 | 757 | ||
| 740 | #Produces Discrete file | 758 | #Produces Discrete file |
| 741 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 759 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
| 742 | .[[1]] %>% | 760 | .[[1]] %>% |
| 743 | .[length(.)] %>% | 761 | .[length(.)] %>% |
| 744 | gsub("\\D","",.) %>% | 762 | gsub("\\D","",.) %>% |
| 745 | c("GSE",.,"dscrt.txt") %>% | 763 | c("GSE",.,"dscrt.txt") %>% |
| 746 | paste(collapse = "") | 764 | paste(collapse = "") |
| 747 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 765 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
| 748 | 766 | ||
| 749 | 767 | ||
| 750 | n <- n + 1 | 768 | n <- n + 1 |
| 751 | } | 769 | } |
| 752 | } | 770 | } |
| 753 | } | 771 | } |
| 754 | } | 772 | } |