Commit 6a66705877a70dd83cb8cff53f5b52f447b4dc76
1 parent
769f081f9b
Exists in
master
Don't use this code yet
updated else if statements
Showing
1 changed file
with
20 additions
and
38 deletions
Show diff stats
RAutoClDs.R
1 | ######################################################################## | 1 | ######################################################################## |
2 | # Don't Use This Code Just Yet # | 2 | # Don't Use This Code Just Yet # |
3 | ######################################################################## | 3 | ######################################################################## |
4 | #Efrain H. Gonzalez | 4 | #Efrain H. Gonzalez |
5 | #6/16/2017 | 5 | #6/16/2017 |
6 | 6 | ||
7 | #Libraries required to run the code | 7 | #Libraries required to run the code |
8 | library(pryr) | 8 | library(pryr) |
9 | library(MASS) | 9 | library(MASS) |
10 | library(dplyr) | 10 | library(dplyr) |
11 | library(tidyr) | 11 | library(tidyr) |
12 | library(readr) | 12 | library(readr) |
13 | library(stringr) | 13 | library(stringr) |
14 | 14 | ||
15 | 15 | ||
16 | #Necessary Functions | 16 | #Necessary Functions |
17 | #1#Function for handling the changing of row names and column names | 17 | #1#Function for handling the changing of row names and column names |
18 | chngrownm <- function(mat){ | 18 | chngrownm <- function(mat){ |
19 | row <- dim(mat)[1] | 19 | row <- dim(mat)[1] |
20 | col <- dim(mat)[2] | 20 | col <- dim(mat)[2] |
21 | e <- 1 | 21 | e <- 1 |
22 | r <- 1 | 22 | r <- 1 |
23 | a <- 1 | 23 | a <- 1 |
24 | h <- 1 | 24 | h <- 1 |
25 | g <- 1 | 25 | g <- 1 |
26 | o <- 1 | 26 | o <- 1 |
27 | for(e in 1:col){ | 27 | for(e in 1:col){ |
28 | if("!Sample_source_name_ch1"==mat[1,e]){ | 28 | if("!Sample_source_name_ch1"==mat[1,e]){ |
29 | colnames(mat)[e] <- "Brain_Region" | 29 | colnames(mat)[e] <- "Brain_Region" |
30 | } | 30 | } else if("!Sample_title" == mat[1,e]){ |
31 | else if("!Sample_title" == mat[1,e]){ | ||
32 | colnames(mat)[e] <- "Title" | 31 | colnames(mat)[e] <- "Title" |
33 | } | 32 | } else if("!Sample_geo_accession" == mat[1,e]){ |
34 | else if("!Sample_geo_accession" == mat[1,e]){ | ||
35 | colnames(mat)[e] <- "ID_REF" | 33 | colnames(mat)[e] <- "ID_REF" |
36 | } else{ | 34 | } else{ |
37 | if(grepl("Sex|gender|Gender|sex",mat[2,e])==TRUE){ | 35 | if(grepl("Sex|gender|Gender|sex",mat[2,e])==TRUE){ |
38 | colnames(mat)[e] <- paste0("Sex",r) | 36 | colnames(mat)[e] <- paste0("Sex",r) |
39 | r = r + 1 | 37 | r = r + 1 |
40 | } | 38 | } |
41 | if(grepl("postmorteminterval|PMI|pmi|interval",mat[2,e])==TRUE){ | 39 | if(grepl("postmorteminterval|PMI|pmi|interval",mat[2,e])==TRUE){ |
42 | colnames(mat)[e] <- paste0("PMI",a) | 40 | colnames(mat)[e] <- paste0("PMI",a) |
43 | a = a + 1 | 41 | a = a + 1 |
44 | } | 42 | } |
45 | if(grepl("age|Age|AGE",mat[2,e])==TRUE){ | 43 | if(grepl("age|Age|AGE",mat[2,e])==TRUE){ |
46 | colnames(mat)[e] <- paste0("Age",h) | 44 | colnames(mat)[e] <- paste0("Age",h) |
47 | h = h + 1 | 45 | h = h + 1 |
48 | } | 46 | } |
49 | if(grepl("braak|b&b",mat[2,e])==TRUE){ | 47 | if(grepl("braak|b&b",mat[2,e])==TRUE){ |
50 | colnames(mat)[e] <- paste0("Braak",g) | 48 | colnames(mat)[e] <- paste0("Braak",g) |
51 | g = g + 1 | 49 | g = g + 1 |
52 | } | 50 | } |
53 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,e])==TRUE){ | 51 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,e])==TRUE){ |
54 | colnames(mat)[e] <- paste0("Group",o) | 52 | colnames(mat)[e] <- paste0("Group",o) |
55 | o = o + 1 | 53 | o = o + 1 |
56 | } | 54 | } |
57 | 55 | ||
58 | } | 56 | } |
59 | e = e + 1 | 57 | e = e + 1 |
60 | } | 58 | } |
61 | mat | 59 | mat |
62 | } | 60 | } |
63 | 61 | ||
64 | #2#Function for reorganizing information within the columns | 62 | #2#Function for reorganizing information within the columns |
65 | cinfo <- function(mat){ | 63 | cinfo <- function(mat){ |
66 | col <- dim(mat)[2] | 64 | col <- dim(mat)[2] |
67 | j <-2 | 65 | j <-2 |
68 | for(j in 2:col){ | 66 | for(j in 2:col){ |
69 | if(grepl("Group",colnames(mat)[j]) == TRUE){ | 67 | if(grepl("Group",colnames(mat)[j]) == TRUE){ |
70 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) | 68 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) |
71 | } | 69 | } else if(grepl("Age",colnames(mat)[j])==TRUE){ |
72 | else if(grepl("Age",colnames(mat)[j])==TRUE){ | ||
73 | mat[,j] <- gsub("\\D","",mat[,j])%>% | 70 | mat[,j] <- gsub("\\D","",mat[,j])%>% |
74 | as.integer() | 71 | as.integer() |
75 | } | 72 | } else if(grepl("Sex",colnames(mat)[j])==TRUE){ |
76 | else if(grepl("Sex",colnames(mat)[j])==TRUE){ | ||
77 | mat[,j] <- gsub(".+:\\s","",mat[,j]) | 73 | mat[,j] <- gsub(".+:\\s","",mat[,j]) |
78 | } | 74 | } else if(grepl("PMI",colnames(mat)[j])==TRUE){ |
79 | else if(grepl("PMI",colnames(mat)[j])==TRUE){ | ||
80 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% | 75 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% |
81 | as.numeric() | 76 | as.numeric() |
82 | } | 77 | } else if(grepl("Braak",colnames(mat)[j])==TRUE){ |
83 | else if(grepl("Braak",colnames(mat)[j])==TRUE){ | ||
84 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% | 78 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% |
85 | as.roman()%>% | 79 | as.roman()%>% |
86 | as.integer() | 80 | as.integer() |
87 | } | 81 | } |
88 | j=j+1 | 82 | j=j+1 |
89 | } | 83 | } |
90 | mat | 84 | mat |
91 | } | 85 | } |
92 | 86 | ||
93 | #3#Function for labeling the gene IDs without names | 87 | #3#Function for labeling the gene IDs without names |
94 | NAFIXING <- function(GIDNAM){ | 88 | NAFIXING <- function(GIDNAM){ |
95 | row <- dim(GIDNAM)[1] | 89 | row <- dim(GIDNAM)[1] |
96 | i <- 1 | 90 | i <- 1 |
97 | for(i in 1:row){ | 91 | for(i in 1:row){ |
98 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ | 92 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ |
99 | GIDNAM[i,2] <- GIDNAM[i,1] | 93 | GIDNAM[i,2] <- GIDNAM[i,1] |
100 | } | 94 | } |
101 | i <- i + 1 | 95 | i <- i + 1 |
102 | } | 96 | } |
103 | GIDNAM | 97 | GIDNAM |
104 | } | 98 | } |
105 | 99 | ||
106 | #4#Function for changing the gene ID to gene name | 100 | #4#Function for changing the gene ID to gene name |
107 | cgeneID <- function(GeneName,DATA){ | 101 | cgeneID <- function(GeneName,DATA){ |
108 | nj <- t(GeneName) | 102 | nj <- t(GeneName) |
109 | nq <- t(DATA) | 103 | nq <- t(DATA) |
110 | colGene <- dim(nj)[2] | 104 | colGene <- dim(nj)[2] |
111 | colDATA <- dim(nq)[2] | 105 | colDATA <- dim(nq)[2] |
112 | j <- 1 | 106 | j <- 1 |
113 | for(j in 1:colDATA){ | 107 | for(j in 1:colDATA){ |
114 | #where is that gene id located within the GPL file | 108 | #where is that gene id located within the GPL file |
115 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) | 109 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) |
116 | if(is.na(sum(chngreq))==FALSE){ | 110 | if(is.na(sum(chngreq))==FALSE){ |
117 | if(sum(chngreq) > 0){ | 111 | if(sum(chngreq) > 0){ |
118 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) | 112 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) |
119 | } | 113 | } |
120 | } | 114 | } |
121 | j <- j + 1 | 115 | j <- j + 1 |
122 | } | 116 | } |
123 | nq | 117 | nq |
124 | } | 118 | } |
125 | #cgeneID <- function(GeneName,DATA){ | 119 | #cgeneID <- function(GeneName,DATA){ |
126 | # colGene <- dim(GeneName)[2] | 120 | # colGene <- dim(GeneName)[2] |
127 | # j <- 1 | 121 | # j <- 1 |
128 | # for(j in 1:colGene){ | 122 | # for(j in 1:colGene){ |
129 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) | 123 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) |
130 | # if(is.na(sum(chngsreq))==FALSE){ | 124 | # if(is.na(sum(chngsreq))==FALSE){ |
131 | # if(sum(chngsreq) > 0){ | 125 | # if(sum(chngsreq) > 0){ |
132 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) | 126 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) |
133 | # } | 127 | # } |
134 | # } | 128 | # } |
135 | # j = j+1 | 129 | # j = j+1 |
136 | # } | 130 | # } |
137 | # DATA | 131 | # DATA |
138 | #} | 132 | #} |
139 | 133 | ||
140 | #5#Function for adjusting the gene names | 134 | #5#Function for adjusting the gene names |
141 | gcnames <- function(DiData,usecol=1){ | 135 | gcnames <- function(DiData,usecol=1){ |
142 | nuruns <- dim(DiData)[2] | 136 | nuruns <- dim(DiData)[2] |
143 | i = 1 | 137 | i = 1 |
144 | nwnam <- rep("0",length.out=nuruns) | 138 | nwnam <- rep("0",length.out=nuruns) |
145 | for(i in 1:nuruns){ | 139 | for(i in 1:nuruns){ |
146 | if(length(strsplit(colnames(DiData)[i],"///")[[1]]) >= usecol){ | 140 | if(length(strsplit(colnames(DiData)[i],"///")[[1]]) >= usecol){ |
147 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][usecol]) | 141 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][usecol]) |
148 | } else{ | 142 | } else{ |
149 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][1]) | 143 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][1]) |
150 | } | 144 | } |
151 | 145 | ||
152 | } | 146 | } |
153 | nwnam | 147 | nwnam |
154 | 148 | ||
155 | } | 149 | } |
156 | 150 | ||
157 | #6# Function for discretizing the data | 151 | #6# Function for discretizing the data |
158 | dndat <- function(NDATA){ | 152 | dndat <- function(NDATA){ |
159 | rownd <- dim(NDATA)[1] | 153 | rownd <- dim(NDATA)[1] |
160 | colnd <- dim(NDATA)[2] | 154 | colnd <- dim(NDATA)[2] |
161 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) | 155 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) |
162 | colnames(DDATA) <- colnames(NDATA) | 156 | colnames(DDATA) <- colnames(NDATA) |
163 | i <- 1 | 157 | i <- 1 |
164 | for(i in 1:rownd){ | 158 | for(i in 1:rownd){ |
165 | j <- 1 | 159 | j <- 1 |
166 | for(j in 1:colnd){ | 160 | for(j in 1:colnd){ |
167 | if(is.na(NDATA[i,j])==FALSE){ | 161 | if(is.na(NDATA[i,j])==FALSE){ |
168 | 162 | ||
169 | if(NDATA[i,j] < -1){ | 163 | if(NDATA[i,j] < -1){ |
170 | DDATA[i,j]=0L | 164 | DDATA[i,j]=0L |
171 | } | 165 | } else if(NDATA[i,j] > 1){ |
172 | else if(NDATA[i,j] > 1){ | ||
173 | DDATA[i,j]=2L | 166 | DDATA[i,j]=2L |
174 | } | 167 | } else if(-1 <= NDATA[i,j] && NDATA[i,j] < 1){ |
175 | else if(-1 <= NDATA[i,j] && NDATA[i,j] < 1){ | ||
176 | DDATA[i,j]=1L | 168 | DDATA[i,j]=1L |
177 | } | 169 | } |
178 | } else{ | 170 | } else{ |
179 | DDATA[i,j] = NDATA[i,j] | 171 | DDATA[i,j] = NDATA[i,j] |
180 | } | 172 | } |
181 | j = j + 1 | 173 | j = j + 1 |
182 | } | 174 | } |
183 | i = i + 1 | 175 | i = i + 1 |
184 | } | 176 | } |
185 | DDATA | 177 | DDATA |
186 | } | 178 | } |
187 | 179 | ||
188 | 180 | ||
189 | #MajorFunction#This is the function that does everything else | 181 | #MajorFunction#This is the function that does everything else |
190 | THEFT <- function(){ | 182 | THEFT <- function(){ |
191 | #Set working directory based on the directory of the series matrix file Currently only works for windows | 183 | #Set working directory based on the directory of the series matrix file Currently only works for windows |
192 | wd <- getwd() | 184 | wd <- getwd() |
193 | #list.files() | 185 | #list.files() |
194 | #gsub("wd",wd,"Do you want to clean all data files in the directory wd?") | 186 | #gsub("wd",wd,"Do you want to clean all data files in the directory wd?") |
195 | numDAT <- switch(EXPR = menu(choices = c("Yes","No"),title = gsub("wd",wd,"Do you want to clean all data files in the directory wd?")) + 1,cat("Nothing done\n"),1L,2L) | 187 | numDAT <- switch(EXPR = menu(choices = c("Yes","No"),title = gsub("wd",wd,"Do you want to clean all data files in the directory wd?")) + 1,cat("Nothing done\n"),1L,2L) |
196 | GSEfileloc <- grep("^GSE.+\\.txt\\.gz$",list.files()) | 188 | GSEfileloc <- grep("^GSE.+\\.txt\\.gz$",list.files()) |
197 | GSEfloc <- list.files()[GSEfileloc] | 189 | GSEfloc <- list.files()[GSEfileloc] |
198 | #ALL DATA FILES WILL BE CLEANED | 190 | #ALL DATA FILES WILL BE CLEANED |
199 | if(numDAT == 1){ | 191 | if(numDAT == 1){ |
200 | #indexing the data files | 192 | #indexing the data files |
201 | n <- 1 | 193 | n <- 1 |
202 | for(n in 1: length(GSEfloc)){ | 194 | for(n in 1: length(GSEfloc)){ |
203 | alz <- GSEfloc[n] | 195 | alz <- GSEfloc[n] |
204 | 196 | ||
205 | #Working with the wordy part of the document | 197 | #Working with the wordy part of the document |
206 | alzword <- alz %>% | 198 | alzword <- alz %>% |
207 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 199 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
208 | filter(grepl("!Sample",X1))%>% | 200 | filter(grepl("!Sample",X1))%>% |
209 | filter(!grepl("!Sample_contact",X1)) | 201 | filter(!grepl("!Sample_contact",X1)) |
210 | 202 | ||
211 | #Getting the GPL file | 203 | #Getting the GPL file |
212 | genena <- grep("_platform_id",alzword$X1) %>% | 204 | genena <- grep("_platform_id",alzword$X1) %>% |
213 | alzword$X2[.] %>% | 205 | alzword$X2[.] %>% |
214 | str_trim(.) %>% | 206 | str_trim(.) %>% |
215 | paste0("^",.,"\\D") %>% | 207 | paste0("^",.,"\\D") %>% |
216 | grep(.,list.files()) %>% | 208 | grep(.,list.files()) %>% |
217 | list.files()[.] | 209 | list.files()[.] |
218 | 210 | ||
219 | #Find out if it is a soft GPL file or not | 211 | #Find out if it is a soft GPL file or not |
220 | soft <- strsplit(genena,"[\\|/]") %>% | 212 | soft <- strsplit(genena,"[\\|/]") %>% |
221 | .[[1]] %>% | 213 | .[[1]] %>% |
222 | .[length(.)] %>% | 214 | .[length(.)] %>% |
223 | grepl("soft",.) | 215 | grepl("soft",.) |
224 | 216 | ||
225 | ##Changing row names and column names: | 217 | ##Changing row names and column names: |
226 | ALZWORD <- t(alzword) | 218 | ALZWORD <- t(alzword) |
227 | rownames(ALZWORD)=NULL | 219 | rownames(ALZWORD)=NULL |
228 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 220 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
229 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 221 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
230 | ALZWORD <- ALZWORD%>% | 222 | ALZWORD <- ALZWORD%>% |
231 | as.data.frame()%>% | 223 | as.data.frame()%>% |
232 | dplyr::select(-starts_with("col")) | 224 | dplyr::select(-starts_with("col")) |
233 | 225 | ||
234 | ##Reorganizing information within the columns and final clinical data | 226 | ##Reorganizing information within the columns and final clinical data |
235 | ALZWORDF <- cinfo(ALZWORD) | 227 | ALZWORDF <- cinfo(ALZWORD) |
236 | 228 | ||
237 | 229 | ||
238 | #Working with Actual Data part of file | 230 | #Working with Actual Data part of file |
239 | alzdat <- alz %>% | 231 | alzdat <- alz %>% |
240 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 232 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
241 | ALZDAT <- t(alzdat[,-1]) | 233 | ALZDAT <- t(alzdat[,-1]) |
242 | rownames(ALZDAT)=NULL | 234 | rownames(ALZDAT)=NULL |
243 | 235 | ||
244 | ##Is there a clean version of the GPL file available? | 236 | ##Is there a clean version of the GPL file available? |
245 | gplnum <- strsplit(genena,"[\\|/]") %>% | 237 | gplnum <- strsplit(genena,"[\\|/]") %>% |
246 | .[[1]] %>% | 238 | .[[1]] %>% |
247 | .[length(.)] %>% | 239 | .[length(.)] %>% |
248 | gsub("\\D","",.) | 240 | gsub("\\D","",.) |
249 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 241 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
250 | if(clfileex >= 1){ | 242 | if(clfileex >= 1){ |
251 | #use the clean version | 243 | #use the clean version |
252 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 244 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
253 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 245 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
254 | 246 | ||
255 | } | 247 | } |
256 | else if(clfileex == 0){ | 248 | else if(clfileex == 0){ |
257 | ##Lets Create a clean version | 249 | ##Lets Create a clean version |
258 | 250 | ||
259 | ##Gene ID to Gene Name | 251 | ##Gene ID to Gene Name |
260 | if(soft == TRUE){ | 252 | if(soft == TRUE){ |
261 | #Check to see if there is already a file containing information on soft files | 253 | #Check to see if there is already a file containing information on soft files |
262 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 254 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
263 | if(fileex == 1){ | 255 | if(fileex == 1){ |
264 | #Check to see if this GPL soft file has been used before | 256 | #Check to see if this GPL soft file has been used before |
265 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 257 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
266 | .$GPL_FILE_NUM%>% | 258 | .$GPL_FILE_NUM%>% |
267 | grepl(gplnum,.) %>% | 259 | grepl(gplnum,.) %>% |
268 | sum() | 260 | sum() |
269 | if(IDF == 1){ | 261 | if(IDF == 1){ |
270 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 262 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
271 | .$GPL_FILE_NUM%>% | 263 | .$GPL_FILE_NUM%>% |
272 | grep(gplnum,.) | 264 | grep(gplnum,.) |
273 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 265 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
274 | .$LOC_ID %>% | 266 | .$LOC_ID %>% |
275 | .[IDLOCAL] | 267 | .[IDLOCAL] |
276 | geneIDNam <- genena %>% | 268 | geneIDNam <- genena %>% |
277 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 269 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
278 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 270 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
279 | } | 271 | } else if(IDF == 0){ |
280 | else if(IDF == 0){ | ||
281 | #No information on this particular GPL file | 272 | #No information on this particular GPL file |
282 | idLOCGPL <- genena %>% | 273 | idLOCGPL <- genena %>% |
283 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 274 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
284 | t(.) %>% | 275 | t(.) %>% |
285 | grep("^ID\\s*$",.) %>% | 276 | grep("^ID\\s*$",.) %>% |
286 | -1 | 277 | -1 |
287 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 278 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
288 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 279 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
289 | geneIDNam <- genena %>% | 280 | geneIDNam <- genena %>% |
290 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 281 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
291 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 282 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
292 | } | 283 | } |
293 | } | 284 | } else if(fileex == 0){ |
294 | else if(fileex == 0){ | ||
295 | #We must create a file that we can access for later use | 285 | #We must create a file that we can access for later use |
296 | idLOCGPL <- genena %>% | 286 | idLOCGPL <- genena %>% |
297 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 287 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
298 | t(.) %>% | 288 | t(.) %>% |
299 | grep("^ID\\s*$",.) %>% | 289 | grep("^ID\\s*$",.) %>% |
300 | -1 | 290 | -1 |
301 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 291 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
302 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 292 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
303 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 293 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
304 | geneIDNam <- genena %>% | 294 | geneIDNam <- genena %>% |
305 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 295 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
306 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 296 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
307 | } | 297 | } |
308 | } | 298 | } else if(soft == FALSE){ |
309 | else if(soft == FALSE){ | ||
310 | geneIDNam <- genena %>% | 299 | geneIDNam <- genena %>% |
311 | read_delim(delim="\t",comment = "#")%>% | 300 | read_delim(delim="\t",comment = "#")%>% |
312 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 301 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
313 | } | 302 | } |
314 | 303 | ||
315 | ##Labeling the gene IDs without names | 304 | ##Labeling the gene IDs without names |
316 | geneIDNam <- NAFIXING(geneIDNam) | 305 | geneIDNam <- NAFIXING(geneIDNam) |
317 | 306 | ||
318 | ##remove the whitespace | 307 | ##remove the whitespace |
319 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 308 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
320 | 309 | ||
321 | ##Here is the clean version | 310 | ##Here is the clean version |
322 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 311 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
323 | } | 312 | } |
324 | 313 | ||
325 | 314 | ||
326 | 315 | ||
327 | ##Changing the gene ID to gene name | 316 | ##Changing the gene ID to gene name |
328 | ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat)) | 317 | ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat)) |
329 | colnames(ALZDAT) = ALZDAT1[1,] | 318 | colnames(ALZDAT) = ALZDAT1[1,] |
330 | 319 | ||
331 | 320 | ||
332 | ##Adjusting the column names aka the gene names | 321 | ##Adjusting the column names aka the gene names |
333 | colnames(ALZDAT) <- gcnames(ALZDAT) | 322 | colnames(ALZDAT) <- gcnames(ALZDAT) |
334 | 323 | ||
335 | 324 | ||
336 | #Full RAW Data | 325 | #Full RAW Data |
337 | Fullalzdwr <- ALZDAT %>% | 326 | Fullalzdwr <- ALZDAT %>% |
338 | as.data.frame() %>% | 327 | as.data.frame() %>% |
339 | cbind(ALZWORDF,.) | 328 | cbind(ALZWORDF,.) |
340 | 329 | ||
341 | #Raw file is output | 330 | #Raw file is output |
342 | nfnaex <- strsplit(alz,"[\\]") %>% | 331 | nfnaex <- strsplit(alz,"[\\]") %>% |
343 | .[[1]] %>% | 332 | .[[1]] %>% |
344 | .[length(.)] %>% | 333 | .[length(.)] %>% |
345 | gsub("\\D","",.) %>% | 334 | gsub("\\D","",.) %>% |
346 | c("GSE",.,"aftexcel.txt") %>% | 335 | c("GSE",.,"aftexcel.txt") %>% |
347 | paste(collapse = "") | 336 | paste(collapse = "") |
348 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 337 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
349 | 338 | ||
350 | 339 | ||
351 | 340 | ||
352 | #Now for the discretization part | 341 | #Now for the discretization part |
353 | ##get the wordy part again | 342 | ##get the wordy part again |
354 | rawword <- t(ALZWORDF) | 343 | rawword <- t(ALZWORDF) |
355 | 344 | ||
356 | ##where is ID_REF located | 345 | ##where is ID_REF located |
357 | hereim <- grep("ID_REF",rownames(rawword)) | 346 | hereim <- grep("ID_REF",rownames(rawword)) |
358 | 347 | ||
359 | ##Subject Names GSM... | 348 | ##Subject Names GSM... |
360 | subjnam <- rawword[hereim,] | 349 | subjnam <- rawword[hereim,] |
361 | 350 | ||
362 | ##Getting the names for the rows | 351 | ##Getting the names for the rows |
363 | namedarows <- rownames(rawword)[-hereim] %>% | 352 | namedarows <- rownames(rawword)[-hereim] %>% |
364 | as.data.frame() | 353 | as.data.frame() |
365 | RAWWORD <- rawword[-hereim,] %>% | 354 | RAWWORD <- rawword[-hereim,] %>% |
366 | as.data.frame() %>% | 355 | as.data.frame() %>% |
367 | bind_cols(namedarows,.) | 356 | bind_cols(namedarows,.) |
368 | z <- 1 | 357 | z <- 1 |
369 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 358 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
370 | for(z in 1:dim(RAWWORD)[1]){ | 359 | for(z in 1:dim(RAWWORD)[1]){ |
371 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 360 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
372 | z <- z + 1 | 361 | z <- z + 1 |
373 | } | 362 | } |
374 | 363 | ||
375 | colnames(naroww) <- "ROW_NAs" | 364 | colnames(naroww) <- "ROW_NAs" |
376 | RAWWORD <- bind_cols(RAWWORD,naroww) | 365 | RAWWORD <- bind_cols(RAWWORD,naroww) |
377 | 366 | ||
378 | 367 | ||
379 | roALZna <- t(ALZDAT) %>% | 368 | roALZna <- t(ALZDAT) %>% |
380 | rownames(.) %>% | 369 | rownames(.) %>% |
381 | as.data.frame(.) | 370 | as.data.frame(.) |
382 | colnames(roALZna) <- "ID_REF" | 371 | colnames(roALZna) <- "ID_REF" |
383 | 372 | ||
384 | RAWDAT <- t(ALZDAT) %>% | 373 | RAWDAT <- t(ALZDAT) %>% |
385 | as.data.frame(.) | 374 | as.data.frame(.) |
386 | colnames(RAWDAT) <- NULL | 375 | colnames(RAWDAT) <- NULL |
387 | rownames(RAWDAT) <- NULL | 376 | rownames(RAWDAT) <- NULL |
388 | 377 | ||
389 | RAWDAT2 <- RAWDAT %>% | 378 | RAWDAT2 <- RAWDAT %>% |
390 | cbind(roALZna,.) %>% | 379 | cbind(roALZna,.) %>% |
391 | dplyr::arrange(.,ID_REF) | 380 | dplyr::arrange(.,ID_REF) |
392 | 381 | ||
393 | ##Editing the file for R processing | 382 | ##Editing the file for R processing |
394 | RAWDATID <- RAWDAT2[,1] %>% | 383 | RAWDATID <- RAWDAT2[,1] %>% |
395 | as.matrix(.) | 384 | as.matrix(.) |
396 | 385 | ||
397 | RAWDATNUM <- RAWDAT2[,-1] %>% | 386 | RAWDATNUM <- RAWDAT2[,-1] %>% |
398 | mapply(.,FUN = as.numeric) %>% | 387 | mapply(.,FUN = as.numeric) %>% |
399 | t(.) | 388 | t(.) |
400 | 389 | ||
401 | ##Consolidating genes with the same name | 390 | ##Consolidating genes with the same name |
402 | ###create empty matrix of size equal to tabRDATID | 391 | ###create empty matrix of size equal to tabRDATID |
403 | tabRDATID <- table(RAWDATID) | 392 | tabRDATID <- table(RAWDATID) |
404 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 393 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
405 | j <- 1 | 394 | j <- 1 |
406 | for(j in 1:length(tabRDATID)){ | 395 | for(j in 1:length(tabRDATID)){ |
407 | ##Putting the ones without duplicates in their new homes | 396 | ##Putting the ones without duplicates in their new homes |
408 | if(tabRDATID[j] == 1){ | 397 | if(tabRDATID[j] == 1){ |
409 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 398 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
410 | } | 399 | } else if(tabRDATID[j] > 1){ |
411 | ##Averaging duplicates and putting them in their new homes | 400 | ##Averaging duplicates and putting them in their new homes |
412 | else if(tabRDATID[j] > 1){ | ||
413 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 401 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
414 | } | 402 | } |
415 | j <- j + 1 | 403 | j <- j + 1 |
416 | } | 404 | } |
417 | 405 | ||
418 | ##Scaling the Data | 406 | ##Scaling the Data |
419 | scrawdat <- NuRDATN%>% | 407 | scrawdat <- NuRDATN%>% |
420 | scale() | 408 | scale() |
421 | attr(scrawdat,"scaled:center") <- NULL | 409 | attr(scrawdat,"scaled:center") <- NULL |
422 | attr(scrawdat,"scaled:scale") <- NULL | 410 | attr(scrawdat,"scaled:scale") <- NULL |
423 | colnames(scrawdat) <- rownames(tabRDATID) | 411 | colnames(scrawdat) <- rownames(tabRDATID) |
424 | 412 | ||
425 | ##Discretized the Data | 413 | ##Discretized the Data |
426 | dialzdat <- scrawdat %>% | 414 | dialzdat <- scrawdat %>% |
427 | dndat(.) %>% | 415 | dndat(.) %>% |
428 | t()%>% | 416 | t()%>% |
429 | as.data.frame(.) | 417 | as.data.frame(.) |
430 | colnames(dialzdat) <- rownames(RAWDATNUM) | 418 | colnames(dialzdat) <- rownames(RAWDATNUM) |
431 | 419 | ||
432 | ##setting "ID_REF" as a new variable | 420 | ##setting "ID_REF" as a new variable |
433 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) | 421 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) |
434 | colnames(geneNAM) <- "ID_REF" | 422 | colnames(geneNAM) <- "ID_REF" |
435 | rownames(dialzdat) <- NULL | 423 | rownames(dialzdat) <- NULL |
436 | dialzdat <-bind_cols(geneNAM,dialzdat) | 424 | dialzdat <-bind_cols(geneNAM,dialzdat) |
437 | 425 | ||
438 | ##NAs in a column | 426 | ##NAs in a column |
439 | x <- 2 | 427 | x <- 2 |
440 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 428 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
441 | nacol[1,1] = "COL_NAs" | 429 | nacol[1,1] = "COL_NAs" |
442 | for(x in 2:dim(dialzdat)[2]){ | 430 | for(x in 2:dim(dialzdat)[2]){ |
443 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 431 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
444 | x <- x + 1 | 432 | x <- x + 1 |
445 | } | 433 | } |
446 | colnames(nacol) <- colnames(dialzdat) | 434 | colnames(nacol) <- colnames(dialzdat) |
447 | dialzdat <- bind_rows(dialzdat,nacol) | 435 | dialzdat <- bind_rows(dialzdat,nacol) |
448 | 436 | ||
449 | ##NAs in a row | 437 | ##NAs in a row |
450 | y <- 1 | 438 | y <- 1 |
451 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 439 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
452 | for(y in 1:dim(dialzdat)[1]){ | 440 | for(y in 1:dim(dialzdat)[1]){ |
453 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 441 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
454 | y <- y + 1 | 442 | y <- y + 1 |
455 | } | 443 | } |
456 | colnames(narowd) <- "ROW_NAs" | 444 | colnames(narowd) <- "ROW_NAs" |
457 | dialzdat <- bind_cols(dialzdat,narowd) | 445 | dialzdat <- bind_cols(dialzdat,narowd) |
458 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 446 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
459 | colnames(RAWWORD) <- colnames(dialzdat) | 447 | colnames(RAWWORD) <- colnames(dialzdat) |
460 | ##converting to character so that the clinical can be brought together with discrete data | 448 | ##converting to character so that the clinical can be brought together with discrete data |
461 | k <- 2 | 449 | k <- 2 |
462 | for(k in 2:dim(dialzdat)[2]-1){ | 450 | for(k in 2:dim(dialzdat)[2]-1){ |
463 | dialzdat[,k] <- as.character(dialzdat[,k]) | 451 | dialzdat[,k] <- as.character(dialzdat[,k]) |
464 | k <- k + 1 | 452 | k <- k + 1 |
465 | } | 453 | } |
466 | #The End the full data | 454 | #The End the full data |
467 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 455 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
468 | 456 | ||
469 | #Produces Discrete file | 457 | #Produces Discrete file |
470 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 458 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
471 | .[[1]] %>% | 459 | .[[1]] %>% |
472 | .[length(.)] %>% | 460 | .[length(.)] %>% |
473 | gsub("\\D","",.) %>% | 461 | gsub("\\D","",.) %>% |
474 | c("GSE",.,"dscrt.txt") %>% | 462 | c("GSE",.,"dscrt.txt") %>% |
475 | paste(collapse = "") | 463 | paste(collapse = "") |
476 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 464 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
477 | n <- n +1 | 465 | n <- n +1 |
478 | } | 466 | } |
479 | } | 467 | } else if(numDAT == 2){ |
480 | |||
481 | #CHOOSE A DATA FILE TO CLEAN OR SEVERAL DATA FILES TO CLEAN | 468 | #CHOOSE A DATA FILE TO CLEAN OR SEVERAL DATA FILES TO CLEAN |
482 | else if(numDAT == 2){ | 469 | |
483 | #All the files you want to analyze | 470 | #All the files you want to analyze |
484 | ANDIS <- select.list(choices = list.files()[GSEfileloc],multiple = TRUE, title = "Choose the file/files you want to analyze:") | 471 | ANDIS <- select.list(choices = list.files()[GSEfileloc],multiple = TRUE, title = "Choose the file/files you want to analyze:") |
485 | if(length(ANDIS) == 0){ | 472 | if(length(ANDIS) == 0){ |
486 | #Spit out a warning | 473 | #Spit out a warning |
487 | warning("You did not select any files and so no cleaning will be performed") | 474 | warning("You did not select any files and so no cleaning will be performed") |
488 | } else{ | 475 | } else{ |
489 | #indexing the data files | 476 | #indexing the data files |
490 | n <- 1 | 477 | n <- 1 |
491 | for(n in 1: length(ANDIS)){ | 478 | for(n in 1: length(ANDIS)){ |
492 | alz <- ANDIS[n] | 479 | alz <- ANDIS[n] |
493 | 480 | ||
494 | #Working with the wordy part of the document | 481 | #Working with the wordy part of the document |
495 | alzword <- alz %>% | 482 | alzword <- alz %>% |
496 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 483 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
497 | filter(grepl("!Sample",X1))%>% | 484 | filter(grepl("!Sample",X1))%>% |
498 | filter(!grepl("!Sample_contact",X1)) | 485 | filter(!grepl("!Sample_contact",X1)) |
499 | 486 | ||
500 | #Getting the GPL file | 487 | #Getting the GPL file |
501 | genena <- grep("_platform_id",alzword$X1) %>% | 488 | genena <- grep("_platform_id",alzword$X1) %>% |
502 | alzword$X2[.] %>% | 489 | alzword$X2[.] %>% |
503 | str_trim(.) %>% | 490 | str_trim(.) %>% |
504 | paste0("^",.,"\\D") %>% | 491 | paste0("^",.,"\\D") %>% |
505 | grep(.,list.files()) %>% | 492 | grep(.,list.files()) %>% |
506 | list.files()[.] | 493 | list.files()[.] |
507 | 494 | ||
508 | #Find out if it is a soft GPL file or not | 495 | #Find out if it is a soft GPL file or not |
509 | soft <- strsplit(genena,"[\\|/]") %>% | 496 | soft <- strsplit(genena,"[\\|/]") %>% |
510 | .[[1]] %>% | 497 | .[[1]] %>% |
511 | .[length(.)] %>% | 498 | .[length(.)] %>% |
512 | grepl("soft",.) | 499 | grepl("soft",.) |
513 | 500 | ||
514 | ##Changing row names and column names: | 501 | ##Changing row names and column names: |
515 | ALZWORD <- t(alzword) | 502 | ALZWORD <- t(alzword) |
516 | rownames(ALZWORD)=NULL | 503 | rownames(ALZWORD)=NULL |
517 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 504 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
518 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 505 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
519 | ALZWORD <- ALZWORD%>% | 506 | ALZWORD <- ALZWORD%>% |
520 | as.data.frame()%>% | 507 | as.data.frame()%>% |
521 | dplyr::select(-starts_with("col")) | 508 | dplyr::select(-starts_with("col")) |
522 | 509 | ||
523 | ##Reorganizing information within the columns and final clinical data | 510 | ##Reorganizing information within the columns and final clinical data |
524 | ALZWORDF <- cinfo(ALZWORD) | 511 | ALZWORDF <- cinfo(ALZWORD) |
525 | 512 | ||
526 | 513 | ||
527 | #Working with Actual Data part of file | 514 | #Working with Actual Data part of file |
528 | alzdat <- alz %>% | 515 | alzdat <- alz %>% |
529 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 516 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
530 | ALZDAT <- t(alzdat[,-1]) | 517 | ALZDAT <- t(alzdat[,-1]) |
531 | rownames(ALZDAT)=NULL | 518 | rownames(ALZDAT)=NULL |
532 | 519 | ||
533 | ##Is there a clean version of the GPL file available? | 520 | ##Is there a clean version of the GPL file available? |
534 | gplnum <- strsplit(genena,"[\\|/]") %>% | 521 | gplnum <- strsplit(genena,"[\\|/]") %>% |
535 | .[[1]] %>% | 522 | .[[1]] %>% |
536 | .[length(.)] %>% | 523 | .[length(.)] %>% |
537 | gsub("\\D","",.) | 524 | gsub("\\D","",.) |
538 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 525 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
539 | if(clfileex >= 1){ | 526 | if(clfileex >= 1){ |
540 | #use the clean version | 527 | #use the clean version |
541 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 528 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
542 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 529 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
543 | 530 | ||
544 | } | 531 | } else if(clfileex == 0){ |
545 | else if(clfileex == 0){ | ||
546 | ##Lets Create a clean version | 532 | ##Lets Create a clean version |
547 | 533 | ||
548 | ##Gene ID to Gene Name | 534 | ##Gene ID to Gene Name |
549 | if(soft == TRUE){ | 535 | if(soft == TRUE){ |
550 | #Check to see if there is already a file containing information on soft files | 536 | #Check to see if there is already a file containing information on soft files |
551 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 537 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
552 | if(fileex == 1){ | 538 | if(fileex == 1){ |
553 | #Check to see if this GPL soft file has been used before | 539 | #Check to see if this GPL soft file has been used before |
554 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 540 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
555 | .$GPL_FILE_NUM%>% | 541 | .$GPL_FILE_NUM%>% |
556 | grepl(gplnum,.) %>% | 542 | grepl(gplnum,.) %>% |
557 | sum() | 543 | sum() |
558 | if(IDF == 1){ | 544 | if(IDF == 1){ |
559 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 545 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
560 | .$GPL_FILE_NUM%>% | 546 | .$GPL_FILE_NUM%>% |
561 | grep(gplnum,.) | 547 | grep(gplnum,.) |
562 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 548 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
563 | .$LOC_ID %>% | 549 | .$LOC_ID %>% |
564 | .[IDLOCAL] | 550 | .[IDLOCAL] |
565 | geneIDNam <- genena %>% | 551 | geneIDNam <- genena %>% |
566 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 552 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
567 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 553 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
568 | } | 554 | } else if(IDF == 0){ |
569 | else if(IDF == 0){ | ||
570 | #No information on this particular GPL file | 555 | #No information on this particular GPL file |
571 | idLOCGPL <- genena %>% | 556 | idLOCGPL <- genena %>% |
572 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 557 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
573 | t(.) %>% | 558 | t(.) %>% |
574 | grep("^ID\\s*$",.) %>% | 559 | grep("^ID\\s*$",.) %>% |
575 | -1 | 560 | -1 |
576 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 561 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
577 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 562 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
578 | geneIDNam <- genena %>% | 563 | geneIDNam <- genena %>% |
579 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 564 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
580 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 565 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
581 | } | 566 | } |
582 | } | 567 | } else if(fileex == 0){ |
583 | else if(fileex == 0){ | ||
584 | #We must create a file that we can access for later use | 568 | #We must create a file that we can access for later use |
585 | idLOCGPL <- genena %>% | 569 | idLOCGPL <- genena %>% |
586 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 570 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
587 | t(.) %>% | 571 | t(.) %>% |
588 | grep("^ID\\s*$",.) %>% | 572 | grep("^ID\\s*$",.) %>% |
589 | -1 | 573 | -1 |
590 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 574 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
591 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 575 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
592 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 576 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
593 | geneIDNam <- genena %>% | 577 | geneIDNam <- genena %>% |
594 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 578 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
595 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 579 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
596 | } | 580 | } |
597 | } | 581 | } else if(soft == FALSE){ |
598 | else if(soft == FALSE){ | ||
599 | geneIDNam <- genena %>% | 582 | geneIDNam <- genena %>% |
600 | read_delim(delim="\t",comment = "#")%>% | 583 | read_delim(delim="\t",comment = "#")%>% |
601 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | 584 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) |
602 | } | 585 | } |
603 | 586 | ||
604 | ##Labeling the gene IDs without names | 587 | ##Labeling the gene IDs without names |
605 | geneIDNam <- NAFIXING(geneIDNam) | 588 | geneIDNam <- NAFIXING(geneIDNam) |
606 | 589 | ||
607 | ##remove the whitespace | 590 | ##remove the whitespace |
608 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 591 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
609 | 592 | ||
610 | ##Here is the clean version | 593 | ##Here is the clean version |
611 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 594 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
612 | } | 595 | } |
613 | 596 | ||
614 | 597 | ||
615 | 598 | ||
616 | ##Changing the gene ID to gene name | 599 | ##Changing the gene ID to gene name |
617 | ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat)) | 600 | ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat)) |
618 | colnames(ALZDAT) = ALZDAT1[1,] | 601 | colnames(ALZDAT) = ALZDAT1[1,] |
619 | 602 | ||
620 | 603 | ||
621 | ##Adjusting the column names aka the gene names | 604 | ##Adjusting the column names aka the gene names |
622 | colnames(ALZDAT) <- gcnames(ALZDAT) | 605 | colnames(ALZDAT) <- gcnames(ALZDAT) |
623 | 606 | ||
624 | 607 | ||
625 | #Full RAW Data | 608 | #Full RAW Data |
626 | Fullalzdwr <- ALZDAT %>% | 609 | Fullalzdwr <- ALZDAT %>% |
627 | as.data.frame() %>% | 610 | as.data.frame() %>% |
628 | cbind(ALZWORDF,.) | 611 | cbind(ALZWORDF,.) |
629 | 612 | ||
630 | #Raw file is output | 613 | #Raw file is output |
631 | nfnaex <- strsplit(alz,"[\\]") %>% | 614 | nfnaex <- strsplit(alz,"[\\]") %>% |
632 | .[[1]] %>% | 615 | .[[1]] %>% |
633 | .[length(.)] %>% | 616 | .[length(.)] %>% |
634 | gsub("\\D","",.) %>% | 617 | gsub("\\D","",.) %>% |
635 | c("GSE",.,"aftexcel.txt") %>% | 618 | c("GSE",.,"aftexcel.txt") %>% |
636 | paste(collapse = "") | 619 | paste(collapse = "") |
637 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 620 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
638 | 621 | ||
639 | 622 | ||
640 | 623 | ||
641 | #Now for the discretization part | 624 | #Now for the discretization part |
642 | ##get the wordy part again | 625 | ##get the wordy part again |
643 | rawword <- t(ALZWORDF) | 626 | rawword <- t(ALZWORDF) |
644 | 627 | ||
645 | ##where is ID_REF located | 628 | ##where is ID_REF located |
646 | hereim <- grep("ID_REF",rownames(rawword)) | 629 | hereim <- grep("ID_REF",rownames(rawword)) |
647 | 630 | ||
648 | ##Subject Names GSM... | 631 | ##Subject Names GSM... |
649 | subjnam <- rawword[hereim,] | 632 | subjnam <- rawword[hereim,] |
650 | 633 | ||
651 | ##Getting the names for the rows | 634 | ##Getting the names for the rows |
652 | namedarows <- rownames(rawword)[-hereim] %>% | 635 | namedarows <- rownames(rawword)[-hereim] %>% |
653 | as.data.frame() | 636 | as.data.frame() |
654 | RAWWORD <- rawword[-hereim,] %>% | 637 | RAWWORD <- rawword[-hereim,] %>% |
655 | as.data.frame() %>% | 638 | as.data.frame() %>% |
656 | bind_cols(namedarows,.) | 639 | bind_cols(namedarows,.) |
657 | z <- 1 | 640 | z <- 1 |
658 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 641 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
659 | for(z in 1:dim(RAWWORD)[1]){ | 642 | for(z in 1:dim(RAWWORD)[1]){ |
660 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 643 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
661 | z <- z + 1 | 644 | z <- z + 1 |
662 | } | 645 | } |
663 | 646 | ||
664 | colnames(naroww) <- "ROW_NAs" | 647 | colnames(naroww) <- "ROW_NAs" |
665 | RAWWORD <- bind_cols(RAWWORD,naroww) | 648 | RAWWORD <- bind_cols(RAWWORD,naroww) |
666 | 649 | ||
667 | 650 | ||
668 | roALZna <- t(ALZDAT) %>% | 651 | roALZna <- t(ALZDAT) %>% |
669 | rownames(.) %>% | 652 | rownames(.) %>% |
670 | as.data.frame(.) | 653 | as.data.frame(.) |
671 | colnames(roALZna) <- "ID_REF" | 654 | colnames(roALZna) <- "ID_REF" |
672 | 655 | ||
673 | RAWDAT <- t(ALZDAT) %>% | 656 | RAWDAT <- t(ALZDAT) %>% |
674 | as.data.frame(.) | 657 | as.data.frame(.) |
675 | colnames(RAWDAT) <- NULL | 658 | colnames(RAWDAT) <- NULL |
676 | rownames(RAWDAT) <- NULL | 659 | rownames(RAWDAT) <- NULL |
677 | 660 | ||
678 | RAWDAT2 <- RAWDAT %>% | 661 | RAWDAT2 <- RAWDAT %>% |
679 | cbind(roALZna,.) %>% | 662 | cbind(roALZna,.) %>% |
680 | dplyr::arrange(.,ID_REF) | 663 | dplyr::arrange(.,ID_REF) |
681 | 664 | ||
682 | ##Editing the file for R processing | 665 | ##Editing the file for R processing |
683 | RAWDATID <- RAWDAT2[,1] %>% | 666 | RAWDATID <- RAWDAT2[,1] %>% |
684 | as.matrix(.) | 667 | as.matrix(.) |
685 | 668 | ||
686 | RAWDATNUM <- RAWDAT2[,-1] %>% | 669 | RAWDATNUM <- RAWDAT2[,-1] %>% |
687 | mapply(.,FUN = as.numeric) %>% | 670 | mapply(.,FUN = as.numeric) %>% |
688 | t(.) | 671 | t(.) |
689 | 672 | ||
690 | ##Consolidating genes with the same name | 673 | ##Consolidating genes with the same name |
691 | ###create empty matrix of size equal to tabRDATID | 674 | ###create empty matrix of size equal to tabRDATID |
692 | tabRDATID <- table(RAWDATID) | 675 | tabRDATID <- table(RAWDATID) |
693 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 676 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
694 | j <- 1 | 677 | j <- 1 |
695 | for(j in 1:length(tabRDATID)){ | 678 | for(j in 1:length(tabRDATID)){ |
696 | ##Putting the ones without duplicates in their new homes | 679 | ##Putting the ones without duplicates in their new homes |
697 | if(tabRDATID[j] == 1){ | 680 | if(tabRDATID[j] == 1){ |
698 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 681 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
699 | } | 682 | } else if(tabRDATID[j] > 1){ |
700 | ##Averaging duplicates and putting them in their new homes | 683 | ##Averaging duplicates and putting them in their new homes |
701 | else if(tabRDATID[j] > 1){ | ||
702 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 684 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
703 | } | 685 | } |
704 | j <- j + 1 | 686 | j <- j + 1 |
705 | } | 687 | } |
706 | 688 | ||
707 | ##Scaling the Data | 689 | ##Scaling the Data |
708 | scrawdat <- NuRDATN%>% | 690 | scrawdat <- NuRDATN%>% |
709 | scale() | 691 | scale() |
710 | attr(scrawdat,"scaled:center") <- NULL | 692 | attr(scrawdat,"scaled:center") <- NULL |
711 | attr(scrawdat,"scaled:scale") <- NULL | 693 | attr(scrawdat,"scaled:scale") <- NULL |
712 | colnames(scrawdat) <- rownames(tabRDATID) | 694 | colnames(scrawdat) <- rownames(tabRDATID) |
713 | 695 | ||
714 | ##Discretized the Data | 696 | ##Discretized the Data |
715 | dialzdat <- scrawdat %>% | 697 | dialzdat <- scrawdat %>% |
716 | dndat(.) %>% | 698 | dndat(.) %>% |
717 | t()%>% | 699 | t()%>% |
718 | as.data.frame(.) | 700 | as.data.frame(.) |
719 | colnames(dialzdat) <- rownames(RAWDATNUM) | 701 | colnames(dialzdat) <- rownames(RAWDATNUM) |
720 | 702 | ||
721 | ##setting "ID_REF" as a new variable | 703 | ##setting "ID_REF" as a new variable |
722 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) | 704 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) |
723 | colnames(geneNAM) <- "ID_REF" | 705 | colnames(geneNAM) <- "ID_REF" |
724 | rownames(dialzdat) <- NULL | 706 | rownames(dialzdat) <- NULL |
725 | dialzdat <-bind_cols(geneNAM,dialzdat) | 707 | dialzdat <-bind_cols(geneNAM,dialzdat) |
726 | 708 | ||
727 | ##NAs in a column | 709 | ##NAs in a column |
728 | x <- 2 | 710 | x <- 2 |
729 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 711 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
730 | nacol[1,1] = "COL_NAs" | 712 | nacol[1,1] = "COL_NAs" |
731 | for(x in 2:dim(dialzdat)[2]){ | 713 | for(x in 2:dim(dialzdat)[2]){ |
732 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 714 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
733 | x <- x + 1 | 715 | x <- x + 1 |
734 | } | 716 | } |
735 | colnames(nacol) <- colnames(dialzdat) | 717 | colnames(nacol) <- colnames(dialzdat) |
736 | dialzdat <- bind_rows(dialzdat,nacol) | 718 | dialzdat <- bind_rows(dialzdat,nacol) |
737 | 719 | ||
738 | ##NAs in a row | 720 | ##NAs in a row |
739 | y <- 1 | 721 | y <- 1 |
740 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 722 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
741 | for(y in 1:dim(dialzdat)[1]){ | 723 | for(y in 1:dim(dialzdat)[1]){ |
742 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 724 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
743 | y <- y + 1 | 725 | y <- y + 1 |
744 | } | 726 | } |
745 | colnames(narowd) <- "ROW_NAs" | 727 | colnames(narowd) <- "ROW_NAs" |
746 | dialzdat <- bind_cols(dialzdat,narowd) | 728 | dialzdat <- bind_cols(dialzdat,narowd) |
747 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 729 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
748 | colnames(RAWWORD) <- colnames(dialzdat) | 730 | colnames(RAWWORD) <- colnames(dialzdat) |
749 | ##converting to character so that the clinical can be brought together with discrete data | 731 | ##converting to character so that the clinical can be brought together with discrete data |
750 | k <- 2 | 732 | k <- 2 |
751 | for(k in 2:dim(dialzdat)[2]-1){ | 733 | for(k in 2:dim(dialzdat)[2]-1){ |
752 | dialzdat[,k] <- as.character(dialzdat[,k]) | 734 | dialzdat[,k] <- as.character(dialzdat[,k]) |
753 | k <- k + 1 | 735 | k <- k + 1 |
754 | } | 736 | } |
755 | #The End the full data | 737 | #The End the full data |
756 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 738 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
757 | 739 | ||
758 | #Produces Discrete file | 740 | #Produces Discrete file |
759 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 741 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
760 | .[[1]] %>% | 742 | .[[1]] %>% |
761 | .[length(.)] %>% | 743 | .[length(.)] %>% |
762 | gsub("\\D","",.) %>% | 744 | gsub("\\D","",.) %>% |
763 | c("GSE",.,"dscrt.txt") %>% | 745 | c("GSE",.,"dscrt.txt") %>% |
764 | paste(collapse = "") | 746 | paste(collapse = "") |
765 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 747 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
766 | 748 | ||
767 | 749 | ||
768 | n <- n + 1 | 750 | n <- n + 1 |
769 | } | 751 | } |
770 | } | 752 | } |
771 | } | 753 | } |
772 | } | 754 | } |
773 | #The Rest of this code will be used every time you want to change a data set | 755 | #The Rest of this code will be used every time you want to change a data set |
774 | THEFT() | 756 | THEFT() |