Commit 788834dd790ca6d024f704be6cb685756857a503
1 parent
69cbaf694d
Exists in
master
This code takes the clean data and discretizes it
Showing
1 changed file
with
157 additions
and
0 deletions
Show diff stats
RPostClean.R
| File was created | 1 | #For Reading Raw Data from the created file | |
| 2 | |||
| 3 | #Required Libraries | ||
| 4 | library(MASS) | ||
| 5 | library(dplyr) | ||
| 6 | library(tidyr) | ||
| 7 | library(readr) | ||
| 8 | library(stringr) | ||
| 9 | |||
| 10 | |||
| 11 | #Necessary Functions | ||
| 12 | |||
| 13 | #1# Function for discretizing the data | ||
| 14 | dndat <- function(NDATA){ | ||
| 15 | rownd <- dim(NDATA)[1] | ||
| 16 | colnd <- dim(NDATA)[2] | ||
| 17 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) | ||
| 18 | colnames(DDATA) <- colnames(NDATA) | ||
| 19 | i = 1 | ||
| 20 | for(i in 1:rownd){ | ||
| 21 | for(j in 1:colnd){ | ||
| 22 | if(is.na(NDATA[i,j])==FALSE){ | ||
| 23 | |||
| 24 | if(NDATA[i,j] < -1){ | ||
| 25 | DDATA[i,j]=0L | ||
| 26 | } | ||
| 27 | if(NDATA[i,j] > 1){ | ||
| 28 | DDATA[i,j]=2L | ||
| 29 | } | ||
| 30 | if(-1 <= NDATA[i,j] && NDATA[i,j] < 1){ | ||
| 31 | DDATA[i,j]=1L | ||
| 32 | } | ||
| 33 | } else{ | ||
| 34 | DDATA[i,j] = NDATA[i,j] | ||
| 35 | } | ||
| 36 | j = j + 1 | ||
| 37 | } | ||
| 38 | i = i + 1 | ||
| 39 | } | ||
| 40 | DDATA | ||
| 41 | } | ||
| 42 | |||
| 43 | |||
| 44 | #Bringing in the file | ||
| 45 | rawdat <- file.choose() | ||
| 46 | RAWDAT <- rawdat %>% | ||
| 47 | read_delim(delim ="\t",col_names = FALSE,skip=1) %>% | ||
| 48 | filter(.,!grepl("Group|Age|Region|PMI|Title|Sex|Braak",X1)) | ||
| 49 | attributes(RAWDAT)$names <- RAWDAT[1,] | ||
| 50 | |||
| 51 | #Just the clinical data | ||
| 52 | RAWWORD <- rawdat %>% | ||
| 53 | read_delim(delim ="\t",col_names = FALSE,skip=1) %>% | ||
| 54 | filter(.,grepl("Group|Age|Region|PMI|Title|Sex|Braak",X1)) | ||
| 55 | attributes(RAWWORD)$names <- RAWDAT[1,] | ||
| 56 | #Add col of NAs to clinical data | ||
| 57 | z <- 1 | ||
| 58 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | ||
| 59 | for(z in 1:dim(RAWWORD)[1]){ | ||
| 60 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | ||
| 61 | z <- z + 1 | ||
| 62 | } | ||
| 63 | colnames(naroww) <- "ROW_NAs" | ||
| 64 | RAWWORD <- bind_cols(RAWWORD,naroww) | ||
| 65 | |||
| 66 | |||
| 67 | ##Getting back to the data | ||
| 68 | RAWDAT2 <- RAWDAT[-1,] %>% | ||
| 69 | dplyr::arrange(.,ID_REF) | ||
| 70 | |||
| 71 | ##Editing the file for R processing | ||
| 72 | RAWDATID <- RAWDAT2[,1] %>% | ||
| 73 | as.matrix(.) | ||
| 74 | RAWDATNUM <- RAWDAT2[,-1] %>% | ||
| 75 | mapply(.,FUN = as.numeric) %>% | ||
| 76 | t(.) | ||
| 77 | |||
| 78 | ##Consolidating genes with the same name | ||
| 79 | tabRDATID <- table(RAWDATID) | ||
| 80 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | ||
| 81 | j <- 1 | ||
| 82 | for(j in 1:length(tabRDATID)){ | ||
| 83 | ##Putting the ones without duplicates in their new homes | ||
| 84 | if(tabRDATID[j] == 1){ | ||
| 85 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | ||
| 86 | } | ||
| 87 | ##Averaging duplicates and putting them in their new homes | ||
| 88 | if(tabRDATID[j] > 1){ | ||
| 89 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | ||
| 90 | } | ||
| 91 | j <- j + 1 | ||
| 92 | } | ||
| 93 | |||
| 94 | |||
| 95 | #Scaling the Data | ||
| 96 | scrawdat <- NuRDATN%>% | ||
| 97 | scale() | ||
| 98 | attr(scrawdat,"scaled:center") <- NULL | ||
| 99 | attr(scrawdat,"scaled:scale") <- NULL | ||
| 100 | colnames(scrawdat) <- rownames(tabRDATID) | ||
| 101 | |||
| 102 | |||
| 103 | #Discretized the Data | ||
| 104 | dialzdat <- scrawdat %>% | ||
| 105 | dndat(.) %>% | ||
| 106 | t()%>% | ||
| 107 | as.data.frame(.) | ||
| 108 | colnames(dialzdat) <- rownames(RAWDATNUM) | ||
| 109 | |||
| 110 | #gene names | ||
| 111 | genena <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) | ||
| 112 | #setting "ID_REF" as a new variable | ||
| 113 | colnames(genena) <- "ID_REF" | ||
| 114 | rownames(dialzdat) <- NULL | ||
| 115 | dialzdat <-bind_cols(genena,dialzdat) | ||
| 116 | |||
| 117 | #NAs in a column | ||
| 118 | x <- 2 | ||
| 119 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | ||
| 120 | nacol[1,1] = "COL_NAs" | ||
| 121 | for(x in 2:dim(dialzdat)[2]){ | ||
| 122 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | ||
| 123 | x <- x + 1 | ||
| 124 | } | ||
| 125 | colnames(nacol) <- colnames(dialzdat) | ||
| 126 | dialzdat<-bind_rows(dialzdat,nacol) | ||
| 127 | |||
| 128 | #NAs in a row | ||
| 129 | y <- 1 | ||
| 130 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | ||
| 131 | for(y in 1:dim(dialzdat)[1]){ | ||
| 132 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | ||
| 133 | y <- y + 1 | ||
| 134 | } | ||
| 135 | colnames(narowd) <- "ROW_NAs" | ||
| 136 | dialzdat <- bind_cols(dialzdat,narowd) | ||
| 137 | |||
| 138 | #converting to character so that the clinical can be brought together with discrete data | ||
| 139 | k <- 2 | ||
| 140 | for(k in 2:dim(dialzdat)[2]-1){ | ||
| 141 | dialzdat[,k] <- as.character(dialzdat[,k]) | ||
| 142 | k <- k + 1 | ||
| 143 | } | ||
| 144 | |||
| 145 | |||
| 146 | #The End the full data we seem to have found Carmen | ||
| 147 | Fullalzdw <- bind_rows(RAWWORD,dialzdat) | ||
| 148 | |||
| 149 | #Create the file | ||
| 150 | nfnaex <- strsplit(rawdat,"[\\|/]") %>% | ||
| 151 | .[[1]] %>% | ||
| 152 | .[length(.)] %>% | ||
| 153 | gsub("\\D","",.) %>% | ||
| 154 | c("GSE",.,"dscrt.txt") %>% | ||
| 155 | paste(collapse = "") | ||
| 156 | write.table(Fullalzdw, file = nfnaex, sep = "\t",col.names = TRUE,row.names = FALSE) | ||
| 157 | |||
| 158 |