Commit 788834dd790ca6d024f704be6cb685756857a503
1 parent
69cbaf694d
Exists in
master
This code takes the clean data and discretizes it
Showing
1 changed file
with
157 additions
and
0 deletions
Show diff stats
RPostClean.R
File was created | 1 | #For Reading Raw Data from the created file | |
2 | |||
3 | #Required Libraries | ||
4 | library(MASS) | ||
5 | library(dplyr) | ||
6 | library(tidyr) | ||
7 | library(readr) | ||
8 | library(stringr) | ||
9 | |||
10 | |||
11 | #Necessary Functions | ||
12 | |||
13 | #1# Function for discretizing the data | ||
14 | dndat <- function(NDATA){ | ||
15 | rownd <- dim(NDATA)[1] | ||
16 | colnd <- dim(NDATA)[2] | ||
17 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) | ||
18 | colnames(DDATA) <- colnames(NDATA) | ||
19 | i = 1 | ||
20 | for(i in 1:rownd){ | ||
21 | for(j in 1:colnd){ | ||
22 | if(is.na(NDATA[i,j])==FALSE){ | ||
23 | |||
24 | if(NDATA[i,j] < -1){ | ||
25 | DDATA[i,j]=0L | ||
26 | } | ||
27 | if(NDATA[i,j] > 1){ | ||
28 | DDATA[i,j]=2L | ||
29 | } | ||
30 | if(-1 <= NDATA[i,j] && NDATA[i,j] < 1){ | ||
31 | DDATA[i,j]=1L | ||
32 | } | ||
33 | } else{ | ||
34 | DDATA[i,j] = NDATA[i,j] | ||
35 | } | ||
36 | j = j + 1 | ||
37 | } | ||
38 | i = i + 1 | ||
39 | } | ||
40 | DDATA | ||
41 | } | ||
42 | |||
43 | |||
44 | #Bringing in the file | ||
45 | rawdat <- file.choose() | ||
46 | RAWDAT <- rawdat %>% | ||
47 | read_delim(delim ="\t",col_names = FALSE,skip=1) %>% | ||
48 | filter(.,!grepl("Group|Age|Region|PMI|Title|Sex|Braak",X1)) | ||
49 | attributes(RAWDAT)$names <- RAWDAT[1,] | ||
50 | |||
51 | #Just the clinical data | ||
52 | RAWWORD <- rawdat %>% | ||
53 | read_delim(delim ="\t",col_names = FALSE,skip=1) %>% | ||
54 | filter(.,grepl("Group|Age|Region|PMI|Title|Sex|Braak",X1)) | ||
55 | attributes(RAWWORD)$names <- RAWDAT[1,] | ||
56 | #Add col of NAs to clinical data | ||
57 | z <- 1 | ||
58 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | ||
59 | for(z in 1:dim(RAWWORD)[1]){ | ||
60 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | ||
61 | z <- z + 1 | ||
62 | } | ||
63 | colnames(naroww) <- "ROW_NAs" | ||
64 | RAWWORD <- bind_cols(RAWWORD,naroww) | ||
65 | |||
66 | |||
67 | ##Getting back to the data | ||
68 | RAWDAT2 <- RAWDAT[-1,] %>% | ||
69 | dplyr::arrange(.,ID_REF) | ||
70 | |||
71 | ##Editing the file for R processing | ||
72 | RAWDATID <- RAWDAT2[,1] %>% | ||
73 | as.matrix(.) | ||
74 | RAWDATNUM <- RAWDAT2[,-1] %>% | ||
75 | mapply(.,FUN = as.numeric) %>% | ||
76 | t(.) | ||
77 | |||
78 | ##Consolidating genes with the same name | ||
79 | tabRDATID <- table(RAWDATID) | ||
80 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | ||
81 | j <- 1 | ||
82 | for(j in 1:length(tabRDATID)){ | ||
83 | ##Putting the ones without duplicates in their new homes | ||
84 | if(tabRDATID[j] == 1){ | ||
85 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | ||
86 | } | ||
87 | ##Averaging duplicates and putting them in their new homes | ||
88 | if(tabRDATID[j] > 1){ | ||
89 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | ||
90 | } | ||
91 | j <- j + 1 | ||
92 | } | ||
93 | |||
94 | |||
95 | #Scaling the Data | ||
96 | scrawdat <- NuRDATN%>% | ||
97 | scale() | ||
98 | attr(scrawdat,"scaled:center") <- NULL | ||
99 | attr(scrawdat,"scaled:scale") <- NULL | ||
100 | colnames(scrawdat) <- rownames(tabRDATID) | ||
101 | |||
102 | |||
103 | #Discretized the Data | ||
104 | dialzdat <- scrawdat %>% | ||
105 | dndat(.) %>% | ||
106 | t()%>% | ||
107 | as.data.frame(.) | ||
108 | colnames(dialzdat) <- rownames(RAWDATNUM) | ||
109 | |||
110 | #gene names | ||
111 | genena <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) | ||
112 | #setting "ID_REF" as a new variable | ||
113 | colnames(genena) <- "ID_REF" | ||
114 | rownames(dialzdat) <- NULL | ||
115 | dialzdat <-bind_cols(genena,dialzdat) | ||
116 | |||
117 | #NAs in a column | ||
118 | x <- 2 | ||
119 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | ||
120 | nacol[1,1] = "COL_NAs" | ||
121 | for(x in 2:dim(dialzdat)[2]){ | ||
122 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | ||
123 | x <- x + 1 | ||
124 | } | ||
125 | colnames(nacol) <- colnames(dialzdat) | ||
126 | dialzdat<-bind_rows(dialzdat,nacol) | ||
127 | |||
128 | #NAs in a row | ||
129 | y <- 1 | ||
130 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | ||
131 | for(y in 1:dim(dialzdat)[1]){ | ||
132 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | ||
133 | y <- y + 1 | ||
134 | } | ||
135 | colnames(narowd) <- "ROW_NAs" | ||
136 | dialzdat <- bind_cols(dialzdat,narowd) | ||
137 | |||
138 | #converting to character so that the clinical can be brought together with discrete data | ||
139 | k <- 2 | ||
140 | for(k in 2:dim(dialzdat)[2]-1){ | ||
141 | dialzdat[,k] <- as.character(dialzdat[,k]) | ||
142 | k <- k + 1 | ||
143 | } | ||
144 | |||
145 | |||
146 | #The End the full data we seem to have found Carmen | ||
147 | Fullalzdw <- bind_rows(RAWWORD,dialzdat) | ||
148 | |||
149 | #Create the file | ||
150 | nfnaex <- strsplit(rawdat,"[\\|/]") %>% | ||
151 | .[[1]] %>% | ||
152 | .[length(.)] %>% | ||
153 | gsub("\\D","",.) %>% | ||
154 | c("GSE",.,"dscrt.txt") %>% | ||
155 | paste(collapse = "") | ||
156 | write.table(Fullalzdw, file = nfnaex, sep = "\t",col.names = TRUE,row.names = FALSE) | ||
157 | |||
158 |