Commit b8bafad302138b13b3381aa768c2fe29142fa42c
1 parent
1b7f1377e8
Exists in
master
Updated by adding in output for average without zscore
Showing
1 changed file
with
66 additions
and
24 deletions
Show diff stats
RAutoClDs.R
| 1 | 1 | ||
| 2 | #Efrain H. Gonzalez | 2 | #Efrain H. Gonzalez |
| 3 | #6/22/2017 | 3 | #6/22/2017 |
| 4 | options(digits = 11) | 4 | options(digits = 11) |
| 5 | #Libraries required to run the code | 5 | #Libraries required to run the code |
| 6 | library(pryr) | 6 | library(pryr) |
| 7 | library(MASS) | 7 | library(MASS) |
| 8 | library(dplyr) | 8 | library(dplyr) |
| 9 | library(tidyr) | 9 | library(tidyr) |
| 10 | library(readr) | 10 | library(readr) |
| 11 | library(stringr) | 11 | library(stringr) |
| 12 | 12 | ||
| 13 | 13 | ||
| 14 | #Necessary Functions | 14 | #Necessary Functions |
| 15 | #1#Function for handling the changing of row names and column names | 15 | #1#Function for handling the changing of row names and column names |
| 16 | chngrownm <- function(mat){ | 16 | chngrownm <- function(mat){ |
| 17 | row <- dim(mat)[1] | 17 | row <- dim(mat)[1] |
| 18 | col <- dim(mat)[2] | 18 | col <- dim(mat)[2] |
| 19 | e <- 1 | 19 | e <- 1 |
| 20 | r <- 1 | 20 | r <- 1 |
| 21 | a <- 1 | 21 | a <- 1 |
| 22 | h <- 1 | 22 | h <- 1 |
| 23 | g <- 1 | 23 | g <- 1 |
| 24 | o <- 1 | 24 | o <- 1 |
| 25 | for(e in 1:col){ | 25 | for(e in 1:col){ |
| 26 | if("!Sample_source_name_ch1"==mat[1,e]){ | 26 | if("!Sample_source_name_ch1"==mat[1,e]){ |
| 27 | colnames(mat)[e] <- "Brain_Region" | 27 | colnames(mat)[e] <- "Brain_Region" |
| 28 | } else if("!Sample_title" == mat[1,e]){ | 28 | } else if("!Sample_title" == mat[1,e]){ |
| 29 | colnames(mat)[e] <- "Title" | 29 | colnames(mat)[e] <- "Title" |
| 30 | } else if("!Sample_geo_accession" == mat[1,e]){ | 30 | } else if("!Sample_geo_accession" == mat[1,e]){ |
| 31 | colnames(mat)[e] <- "ID_REF" | 31 | colnames(mat)[e] <- "ID_REF" |
| 32 | } else{ | 32 | } else{ |
| 33 | if(grepl("Sex|gender|Gender|sex",mat[2,e])==TRUE){ | 33 | if(grepl("Sex|gender|Gender|sex",mat[2,e])==TRUE){ |
| 34 | colnames(mat)[e] <- paste0("Sex",r) | 34 | colnames(mat)[e] <- paste0("Sex",r) |
| 35 | r = r + 1 | 35 | r = r + 1 |
| 36 | } | 36 | } |
| 37 | if(grepl("postmorteminterval|PMI|pmi|interval",mat[2,e])==TRUE){ | 37 | if(grepl("postmorteminterval|PMI|pmi|interval",mat[2,e])==TRUE){ |
| 38 | colnames(mat)[e] <- paste0("PMI",a) | 38 | colnames(mat)[e] <- paste0("PMI",a) |
| 39 | a = a + 1 | 39 | a = a + 1 |
| 40 | } | 40 | } |
| 41 | if(grepl("age|Age|AGE",mat[2,e])==TRUE){ | 41 | if(grepl("age|Age|AGE",mat[2,e])==TRUE){ |
| 42 | colnames(mat)[e] <- paste0("Age",h) | 42 | colnames(mat)[e] <- paste0("Age",h) |
| 43 | h = h + 1 | 43 | h = h + 1 |
| 44 | } | 44 | } |
| 45 | if(grepl("braak|b&b",mat[2,e])==TRUE){ | 45 | if(grepl("braak|b&b",mat[2,e])==TRUE){ |
| 46 | colnames(mat)[e] <- paste0("Braak",g) | 46 | colnames(mat)[e] <- paste0("Braak",g) |
| 47 | g = g + 1 | 47 | g = g + 1 |
| 48 | } | 48 | } |
| 49 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,e])==TRUE){ | 49 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,e])==TRUE){ |
| 50 | colnames(mat)[e] <- paste0("Group",o) | 50 | colnames(mat)[e] <- paste0("Group",o) |
| 51 | o = o + 1 | 51 | o = o + 1 |
| 52 | } | 52 | } |
| 53 | 53 | ||
| 54 | } | 54 | } |
| 55 | e = e + 1 | 55 | e = e + 1 |
| 56 | } | 56 | } |
| 57 | mat | 57 | mat |
| 58 | } | 58 | } |
| 59 | 59 | ||
| 60 | #2#Function for reorganizing information within the columns | 60 | #2#Function for reorganizing information within the columns |
| 61 | cinfo <- function(mat){ | 61 | cinfo <- function(mat){ |
| 62 | col <- dim(mat)[2] | 62 | col <- dim(mat)[2] |
| 63 | j <-2 | 63 | j <-2 |
| 64 | for(j in 2:col){ | 64 | for(j in 2:col){ |
| 65 | if(grepl("Group",colnames(mat)[j]) == TRUE){ | 65 | if(grepl("Group",colnames(mat)[j]) == TRUE){ |
| 66 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) | 66 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) |
| 67 | } else if(grepl("Age",colnames(mat)[j])==TRUE){ | 67 | } else if(grepl("Age",colnames(mat)[j])==TRUE){ |
| 68 | mat[,j] <- gsub("\\D","",mat[,j])%>% | 68 | mat[,j] <- gsub("\\D","",mat[,j])%>% |
| 69 | as.integer() | 69 | as.integer() |
| 70 | } else if(grepl("Sex",colnames(mat)[j])==TRUE){ | 70 | } else if(grepl("Sex",colnames(mat)[j])==TRUE){ |
| 71 | mat[,j] <- gsub(".+:\\s","",mat[,j]) | 71 | mat[,j] <- gsub(".+:\\s","",mat[,j]) |
| 72 | } else if(grepl("PMI",colnames(mat)[j])==TRUE){ | 72 | } else if(grepl("PMI",colnames(mat)[j])==TRUE){ |
| 73 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% | 73 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% |
| 74 | as.numeric() | 74 | as.numeric() |
| 75 | } else if(grepl("Braak",colnames(mat)[j])==TRUE){ | 75 | } else if(grepl("Braak",colnames(mat)[j])==TRUE){ |
| 76 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% | 76 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% |
| 77 | as.roman()%>% | 77 | as.roman()%>% |
| 78 | as.integer() | 78 | as.integer() |
| 79 | } | 79 | } |
| 80 | j=j+1 | 80 | j=j+1 |
| 81 | } | 81 | } |
| 82 | mat | 82 | mat |
| 83 | } | 83 | } |
| 84 | 84 | ||
| 85 | #3#Function for labeling the gene IDs without names | 85 | #3#Function for labeling the gene IDs without names |
| 86 | NAFIXING <- function(GIDNAM){ | 86 | NAFIXING <- function(GIDNAM){ |
| 87 | row <- dim(GIDNAM)[1] | 87 | row <- dim(GIDNAM)[1] |
| 88 | i <- 1 | 88 | i <- 1 |
| 89 | for(i in 1:row){ | 89 | for(i in 1:row){ |
| 90 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ | 90 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ |
| 91 | GIDNAM[i,2] <- GIDNAM[i,1] | 91 | GIDNAM[i,2] <- GIDNAM[i,1] |
| 92 | } | 92 | } |
| 93 | i <- i + 1 | 93 | i <- i + 1 |
| 94 | } | 94 | } |
| 95 | GIDNAM | 95 | GIDNAM |
| 96 | } | 96 | } |
| 97 | 97 | ||
| 98 | #4#Function for changing the gene ID to gene name | 98 | #4#Function for changing the gene ID to gene name |
| 99 | cgeneID <- function(GeneName,DATA){ | 99 | cgeneID <- function(GeneName,DATA){ |
| 100 | nj <- t(GeneName) | 100 | nj <- t(GeneName) |
| 101 | nq <- t(DATA) | 101 | nq <- t(DATA) |
| 102 | colGene <- dim(nj)[2] | 102 | colGene <- dim(nj)[2] |
| 103 | colDATA <- dim(nq)[2] | 103 | colDATA <- dim(nq)[2] |
| 104 | j <- 1 | 104 | j <- 1 |
| 105 | for(j in 1:colDATA){ | 105 | for(j in 1:colDATA){ |
| 106 | #where is that gene id located within the GPL file | 106 | #where is that gene id located within the GPL file |
| 107 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) | 107 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) |
| 108 | if(is.na(sum(chngreq))==FALSE){ | 108 | if(is.na(sum(chngreq))==FALSE){ |
| 109 | if(sum(chngreq) > 0){ | 109 | if(sum(chngreq) > 0){ |
| 110 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) | 110 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) |
| 111 | } | 111 | } |
| 112 | } | 112 | } |
| 113 | j <- j + 1 | 113 | j <- j + 1 |
| 114 | } | 114 | } |
| 115 | nq | 115 | nq |
| 116 | } | 116 | } |
| 117 | #cgeneID <- function(GeneName,DATA){ | 117 | #cgeneID <- function(GeneName,DATA){ |
| 118 | # colGene <- dim(GeneName)[2] | 118 | # colGene <- dim(GeneName)[2] |
| 119 | # j <- 1 | 119 | # j <- 1 |
| 120 | # for(j in 1:colGene){ | 120 | # for(j in 1:colGene){ |
| 121 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) | 121 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) |
| 122 | # if(is.na(sum(chngsreq))==FALSE){ | 122 | # if(is.na(sum(chngsreq))==FALSE){ |
| 123 | # if(sum(chngsreq) > 0){ | 123 | # if(sum(chngsreq) > 0){ |
| 124 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) | 124 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) |
| 125 | # } | 125 | # } |
| 126 | # } | 126 | # } |
| 127 | # j = j+1 | 127 | # j = j+1 |
| 128 | # } | 128 | # } |
| 129 | # DATA | 129 | # DATA |
| 130 | #} | 130 | #} |
| 131 | 131 | ||
| 132 | #5#Function for adjusting the gene names | 132 | #5#Function for adjusting the gene names |
| 133 | gcnames <- function(DiData,usecol=1){ | 133 | gcnames <- function(DiData,usecol=1){ |
| 134 | nuruns <- dim(DiData)[2] | 134 | nuruns <- dim(DiData)[2] |
| 135 | i = 1 | 135 | i = 1 |
| 136 | nwnam <- rep("0",length.out=nuruns) | 136 | nwnam <- rep("0",length.out=nuruns) |
| 137 | for(i in 1:nuruns){ | 137 | for(i in 1:nuruns){ |
| 138 | if(length(strsplit(colnames(DiData)[i],"///|//")[[1]]) >= usecol){ | 138 | if(length(strsplit(colnames(DiData)[i],"///|//")[[1]]) >= usecol){ |
| 139 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][usecol]) | 139 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][usecol]) |
| 140 | } else{ | 140 | } else{ |
| 141 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][1]) | 141 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][1]) |
| 142 | } | 142 | } |
| 143 | 143 | ||
| 144 | } | 144 | } |
| 145 | nwnam | 145 | nwnam |
| 146 | 146 | ||
| 147 | } | 147 | } |
| 148 | 148 | ||
| 149 | #6# Function for discretizing the data | 149 | #6# Function for discretizing the data |
| 150 | dndat <- function(NDATA){ | 150 | dndat <- function(NDATA){ |
| 151 | rownd <- dim(NDATA)[1] | 151 | rownd <- dim(NDATA)[1] |
| 152 | colnd <- dim(NDATA)[2] | 152 | colnd <- dim(NDATA)[2] |
| 153 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) | 153 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) |
| 154 | colnames(DDATA) <- colnames(NDATA) | 154 | colnames(DDATA) <- colnames(NDATA) |
| 155 | i <- 1 | 155 | i <- 1 |
| 156 | for(i in 1:rownd){ | 156 | for(i in 1:rownd){ |
| 157 | j <- 1 | 157 | j <- 1 |
| 158 | for(j in 1:colnd){ | 158 | for(j in 1:colnd){ |
| 159 | if(is.na(NDATA[i,j])==FALSE){ | 159 | if(is.na(NDATA[i,j])==FALSE){ |
| 160 | 160 | ||
| 161 | if(NDATA[i,j] < -1){ | 161 | if(NDATA[i,j] < -1){ |
| 162 | DDATA[i,j]=0L | 162 | DDATA[i,j]=0L |
| 163 | } else if(NDATA[i,j] > 1){ | 163 | } else if(NDATA[i,j] > 1){ |
| 164 | DDATA[i,j]=2L | 164 | DDATA[i,j]=2L |
| 165 | } else if(-1 <= NDATA[i,j] && NDATA[i,j] <= 1){ | 165 | } else if(-1 <= NDATA[i,j] && NDATA[i,j] <= 1){ |
| 166 | DDATA[i,j]=1L | 166 | DDATA[i,j]=1L |
| 167 | } | 167 | } |
| 168 | } else{ | 168 | } else{ |
| 169 | DDATA[i,j] = NDATA[i,j] | 169 | DDATA[i,j] = NDATA[i,j] |
| 170 | } | 170 | } |
| 171 | j = j + 1 | 171 | j = j + 1 |
| 172 | } | 172 | } |
| 173 | i = i + 1 | 173 | i = i + 1 |
| 174 | } | 174 | } |
| 175 | DDATA | 175 | DDATA |
| 176 | } | 176 | } |
| 177 | 177 | ||
| 178 | 178 | ||
| 179 | #MajorFunction#This is the function that does everything else | 179 | #MajorFunction#This is the function that does everything else |
| 180 | THEFT <- function(){ | 180 | THEFT <- function(){ |
| 181 | #Set working directory based on the directory of the series matrix file Currently only works for windows | 181 | #Set working directory based on the directory of the series matrix file Currently only works for windows |
| 182 | wd <- getwd() | 182 | wd <- getwd() |
| 183 | #list.files() | 183 | #list.files() |
| 184 | #gsub("wd",wd,"Do you want to clean all data files in the directory wd?") | 184 | #gsub("wd",wd,"Do you want to clean all data files in the directory wd?") |
| 185 | numDAT <- switch(EXPR = menu(choices = c("Yes","No"),title = gsub("wd",wd,"Do you want to clean all data files in the directory wd?")) + 1,cat("Nothing done\n"),1L,2L) | 185 | numDAT <- switch(EXPR = menu(choices = c("Yes","No"),title = gsub("wd",wd,"Do you want to clean all data files in the directory wd?")) + 1,cat("Nothing done\n"),1L,2L) |
| 186 | GSEfileloc <- grep("^GSE.+\\.txt\\.gz$",list.files()) | 186 | GSEfileloc <- grep("^GSE.+\\.txt\\.gz$",list.files()) |
| 187 | GSEfloc <- list.files()[GSEfileloc] | 187 | GSEfloc <- list.files()[GSEfileloc] |
| 188 | #ALL DATA FILES WILL BE CLEANED | 188 | #ALL DATA FILES WILL BE CLEANED |
| 189 | if(numDAT == 1){ | 189 | if(numDAT == 1){ |
| 190 | #indexing the data files | 190 | #indexing the data files |
| 191 | n <- 1 | 191 | n <- 1 |
| 192 | for(n in 1: length(GSEfloc)){ | 192 | for(n in 1: length(GSEfloc)){ |
| 193 | alz <- GSEfloc[n] | 193 | alz <- GSEfloc[n] |
| 194 | 194 | ||
| 195 | #Working with the wordy part of the document | 195 | #Working with the wordy part of the document |
| 196 | alzword <- alz %>% | 196 | alzword <- alz %>% |
| 197 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 197 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
| 198 | filter(grepl("!Sample",X1))%>% | 198 | filter(grepl("!Sample",X1))%>% |
| 199 | filter(!grepl("!Sample_contact",X1)) | 199 | filter(!grepl("!Sample_contact",X1)) |
| 200 | 200 | ||
| 201 | #Getting the GPL file | 201 | #Getting the GPL file |
| 202 | genena <- grep("_platform_id",alzword$X1) %>% | 202 | genena <- grep("_platform_id",alzword$X1) %>% |
| 203 | alzword$X2[.] %>% | 203 | alzword$X2[.] %>% |
| 204 | str_trim(.) %>% | 204 | str_trim(.) %>% |
| 205 | paste0("^",.,"\\D") %>% | 205 | paste0("^",.,"\\D") %>% |
| 206 | grep(.,list.files()) %>% | 206 | grep(.,list.files()) %>% |
| 207 | list.files()[.] | 207 | list.files()[.] |
| 208 | 208 | ||
| 209 | #Find out if it is a soft GPL file or not | 209 | #Find out if it is a soft GPL file or not |
| 210 | soft <- strsplit(genena,"[\\|/]") %>% | 210 | soft <- strsplit(genena,"[\\|/]") %>% |
| 211 | .[[1]] %>% | 211 | .[[1]] %>% |
| 212 | .[length(.)] %>% | 212 | .[length(.)] %>% |
| 213 | grepl("soft",.) | 213 | grepl("soft",.) |
| 214 | 214 | ||
| 215 | ##Changing row names and column names: | 215 | ##Changing row names and column names: |
| 216 | ALZWORD <- t(alzword) | 216 | ALZWORD <- t(alzword) |
| 217 | rownames(ALZWORD)=NULL | 217 | rownames(ALZWORD)=NULL |
| 218 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 218 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
| 219 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 219 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
| 220 | ALZWORD <- ALZWORD%>% | 220 | ALZWORD <- ALZWORD%>% |
| 221 | as.data.frame(.,stringsAsFactors = FALSE)%>% | 221 | as.data.frame(.,stringsAsFactors = FALSE)%>% |
| 222 | dplyr::select(-starts_with("col")) | 222 | dplyr::select(-starts_with("col")) |
| 223 | 223 | ||
| 224 | ##Reorganizing information within the columns and final clinical data | 224 | ##Reorganizing information within the columns and final clinical data |
| 225 | ALZWORDF <- cinfo(ALZWORD) | 225 | ALZWORDF <- cinfo(ALZWORD) |
| 226 | 226 | ||
| 227 | 227 | ||
| 228 | #Working with Actual Data part of file | 228 | #Working with Actual Data part of file |
| 229 | alzdat <- alz %>% | 229 | alzdat <- alz %>% |
| 230 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 230 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
| 231 | ALZDAT <- t(alzdat[,-1]) | 231 | ALZDAT <- t(alzdat[,-1]) |
| 232 | rownames(ALZDAT)=NULL | 232 | rownames(ALZDAT)=NULL |
| 233 | 233 | ||
| 234 | ##Is there a clean version of the GPL file available? | 234 | ##Is there a clean version of the GPL file available? |
| 235 | gplnum <- strsplit(genena,"[\\|/]") %>% | 235 | gplnum <- strsplit(genena,"[\\|/]") %>% |
| 236 | .[[1]] %>% | 236 | .[[1]] %>% |
| 237 | .[length(.)] %>% | 237 | .[length(.)] %>% |
| 238 | gsub("\\D","",.) | 238 | gsub("\\D","",.) |
| 239 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 239 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
| 240 | if(clfileex >= 1){ | 240 | if(clfileex >= 1){ |
| 241 | #use the clean version | 241 | #use the clean version |
| 242 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 242 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
| 243 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 243 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
| 244 | 244 | ||
| 245 | } else if(clfileex == 0){ | 245 | } else if(clfileex == 0){ |
| 246 | ##Lets Create a clean version | 246 | ##Lets Create a clean version |
| 247 | 247 | ||
| 248 | ##Gene ID to Gene Name | 248 | ##Gene ID to Gene Name |
| 249 | if(soft == TRUE){ | 249 | if(soft == TRUE){ |
| 250 | #Check to see if there is already a file containing information on soft files | 250 | #Check to see if there is already a file containing information on soft files |
| 251 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 251 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
| 252 | if(fileex == 1){ | 252 | if(fileex == 1){ |
| 253 | #Check to see if this GPL soft file has been used before | 253 | #Check to see if this GPL soft file has been used before |
| 254 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 254 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 255 | .$GPL_FILE_NUM%>% | 255 | .$GPL_FILE_NUM%>% |
| 256 | grepl(gplnum,.) %>% | 256 | grepl(gplnum,.) %>% |
| 257 | sum() | 257 | sum() |
| 258 | if(IDF == 1){ | 258 | if(IDF == 1){ |
| 259 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 259 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 260 | .$GPL_FILE_NUM%>% | 260 | .$GPL_FILE_NUM%>% |
| 261 | grep(gplnum,.) | 261 | grep(gplnum,.) |
| 262 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 262 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 263 | .$LOC_ID %>% | 263 | .$LOC_ID %>% |
| 264 | .[IDLOCAL] | 264 | .[IDLOCAL] |
| 265 | geneIDNam <- genena %>% | 265 | geneIDNam <- genena %>% |
| 266 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 266 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
| 267 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 267 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
| 268 | } else if(IDF == 0){ | 268 | } else if(IDF == 0){ |
| 269 | #No information on this particular GPL file | 269 | #No information on this particular GPL file |
| 270 | idLOCGPL <- genena %>% | 270 | idLOCGPL <- genena %>% |
| 271 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 271 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
| 272 | t(.) %>% | 272 | t(.) %>% |
| 273 | grep("^ID\\s*$",.) %>% | 273 | grep("^ID\\s*$",.) %>% |
| 274 | -1 | 274 | -1 |
| 275 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 275 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
| 276 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 276 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
| 277 | geneIDNam <- genena %>% | 277 | geneIDNam <- genena %>% |
| 278 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 278 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
| 279 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 279 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
| 280 | } | 280 | } |
| 281 | } else if(fileex == 0){ | 281 | } else if(fileex == 0){ |
| 282 | #We must create a file that we can access for later use | 282 | #We must create a file that we can access for later use |
| 283 | idLOCGPL <- genena %>% | 283 | idLOCGPL <- genena %>% |
| 284 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 284 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
| 285 | t(.) %>% | 285 | t(.) %>% |
| 286 | grep("^ID\\s*$",.) %>% | 286 | grep("^ID\\s*$",.) %>% |
| 287 | -1 | 287 | -1 |
| 288 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 288 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
| 289 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 289 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
| 290 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 290 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
| 291 | geneIDNam <- genena %>% | 291 | geneIDNam <- genena %>% |
| 292 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 292 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
| 293 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 293 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
| 294 | } | 294 | } |
| 295 | } else if(soft == FALSE){ | 295 | } else if(soft == FALSE){ |
| 296 | geneIDNam <- genena %>% | 296 | geneIDNam <- genena %>% |
| 297 | read_delim(delim="\t",comment = "#")%>% | 297 | read_delim(delim="\t",comment = "#")%>% |
| 298 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 298 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
| 299 | } | 299 | } |
| 300 | 300 | ||
| 301 | ##Labeling the gene IDs without names | 301 | ##Labeling the gene IDs without names |
| 302 | geneIDNam <- NAFIXING(geneIDNam) | 302 | geneIDNam <- NAFIXING(geneIDNam) |
| 303 | 303 | ||
| 304 | ##remove the whitespace | 304 | ##remove the whitespace |
| 305 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 305 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
| 306 | 306 | ||
| 307 | ##Here is the clean version | 307 | ##Here is the clean version |
| 308 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 308 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
| 309 | } | 309 | } |
| 310 | 310 | ||
| 311 | 311 | ||
| 312 | 312 | ||
| 313 | ##Changing the gene ID to gene name | 313 | ##Changing the gene ID to gene name |
| 314 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) | 314 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) |
| 315 | colnames(ALZDAT) = ALZDAT1[1,] | 315 | colnames(ALZDAT) = ALZDAT1[1,] |
| 316 | 316 | ||
| 317 | 317 | ||
| 318 | ##Adjusting the column names aka the gene names | 318 | ##Adjusting the column names aka the gene names |
| 319 | colnames(ALZDAT) <- gcnames(ALZDAT) | 319 | colnames(ALZDAT) <- gcnames(ALZDAT) |
| 320 | 320 | ||
| 321 | 321 | ||
| 322 | #Full RAW Data | 322 | #Full RAW Data |
| 323 | Fullalzdwr <- ALZDAT %>% | 323 | Fullalzdwr <- ALZDAT %>% |
| 324 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 324 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
| 325 | cbind(ALZWORDF,.) | 325 | cbind(ALZWORDF,.) |
| 326 | 326 | ||
| 327 | #Raw file is output | 327 | #Raw file is output |
| 328 | nfnaex <- strsplit(alz,"[\\]") %>% | 328 | nfnaex <- strsplit(alz,"[\\]") %>% |
| 329 | .[[1]] %>% | 329 | .[[1]] %>% |
| 330 | .[length(.)] %>% | 330 | .[length(.)] %>% |
| 331 | gsub("\\D","",.) %>% | 331 | gsub("\\D","",.) %>% |
| 332 | c("GSE",.,"aftexcel.txt") %>% | 332 | c("GSE",.,"aftexcel.txt") %>% |
| 333 | paste(collapse = "") | 333 | paste(collapse = "") |
| 334 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 334 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
| 335 | 335 | ||
| 336 | 336 | ||
| 337 | 337 | ||
| 338 | #Now for the discretization part | 338 | #Now for the discretization part |
| 339 | ##get the wordy part again | 339 | ##get the wordy part again |
| 340 | rawword <- t(ALZWORDF) | 340 | rawword <- t(ALZWORDF) |
| 341 | 341 | ||
| 342 | ##where is ID_REF located | 342 | ##where is ID_REF located |
| 343 | hereim <- grep("ID_REF",rownames(rawword)) | 343 | hereim <- grep("ID_REF",rownames(rawword)) |
| 344 | 344 | ||
| 345 | ##Subject Names GSM... | 345 | ##Subject Names GSM... |
| 346 | subjnam <- rawword[hereim,] | 346 | subjnam <- rawword[hereim,] |
| 347 | 347 | ||
| 348 | ##Getting the names for the rows | 348 | ##Getting the names for the rows |
| 349 | namedarows <- rownames(rawword)[-hereim] %>% | 349 | namedarows <- rownames(rawword)[-hereim] %>% |
| 350 | as.data.frame(.,stringsAsFactors = FALSE) | 350 | as.data.frame(.,stringsAsFactors = FALSE) |
| 351 | RAWWORD <- rawword[-hereim,] %>% | 351 | RAWWORD <- rawword[-hereim,] %>% |
| 352 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 352 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
| 353 | bind_cols(namedarows,.) | 353 | bind_cols(namedarows,.) |
| 354 | z <- 1 | 354 | z <- 1 |
| 355 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 355 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
| 356 | for(z in 1:dim(RAWWORD)[1]){ | 356 | for(z in 1:dim(RAWWORD)[1]){ |
| 357 | if(sum(is.na(RAWWORD[z,])) > 0){ | 357 | if(sum(is.na(RAWWORD[z,])) > 0){ |
| 358 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 358 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
| 359 | } | 359 | } |
| 360 | if(length(grep("NA",RAWWORD[z,])) > 0){ | 360 | if(length(grep("NA",RAWWORD[z,])) > 0){ |
| 361 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] | 361 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] |
| 362 | } | 362 | } |
| 363 | z <- z + 1 | 363 | z <- z + 1 |
| 364 | } | 364 | } |
| 365 | 365 | ||
| 366 | colnames(naroww) <- "ROW_NAs" | 366 | colnames(naroww) <- "ROW_NAs" |
| 367 | RAWWORD <- bind_cols(RAWWORD,naroww) | 367 | RAWWORD <- bind_cols(RAWWORD,naroww) |
| 368 | 368 | ||
| 369 | 369 | ||
| 370 | roALZna <- t(ALZDAT) %>% | 370 | roALZna <- t(ALZDAT) %>% |
| 371 | rownames(.) %>% | 371 | rownames(.) %>% |
| 372 | as.data.frame(.,stringsAsFactors = FALSE) | 372 | as.data.frame(.,stringsAsFactors = FALSE) |
| 373 | colnames(roALZna) <- "ID_REF" | 373 | colnames(roALZna) <- "ID_REF" |
| 374 | 374 | ||
| 375 | RAWDAT <- t(ALZDAT) %>% | 375 | RAWDAT <- t(ALZDAT) %>% |
| 376 | as.data.frame(.,stringsAsFactors = FALSE) | 376 | as.data.frame(.,stringsAsFactors = FALSE) |
| 377 | colnames(RAWDAT) <- NULL | 377 | colnames(RAWDAT) <- NULL |
| 378 | rownames(RAWDAT) <- NULL | 378 | rownames(RAWDAT) <- NULL |
| 379 | 379 | ||
| 380 | RAWDAT2 <- RAWDAT %>% | 380 | RAWDAT2 <- RAWDAT %>% |
| 381 | cbind(roALZna,.) %>% | 381 | cbind(roALZna,.) %>% |
| 382 | dplyr::arrange(.,ID_REF) | 382 | dplyr::arrange(.,ID_REF) |
| 383 | 383 | ||
| 384 | ##Editing the file for R processing | 384 | ##Editing the file for R processing |
| 385 | RAWDATID <- RAWDAT2[,1] %>% | 385 | RAWDATID <- RAWDAT2[,1] %>% |
| 386 | as.matrix(.) | 386 | as.matrix(.) |
| 387 | 387 | ||
| 388 | RAWDATNUM <- RAWDAT2[,-1] %>% | 388 | RAWDATNUM <- RAWDAT2[,-1] %>% |
| 389 | mapply(.,FUN = as.numeric) %>% | 389 | mapply(.,FUN = as.numeric) %>% |
| 390 | t(.) | 390 | t(.) |
| 391 | 391 | ||
| 392 | ##Consolidating genes with the same name | 392 | ##Consolidating genes with the same name |
| 393 | ###create empty matrix of size equal to tabRDATID | 393 | ###create empty matrix of size equal to tabRDATID |
| 394 | tabRDATID <- table(RAWDATID) | 394 | tabRDATID <- table(RAWDATID) |
| 395 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 395 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
| 396 | j <- 1 | 396 | j <- 1 |
| 397 | for(j in 1:length(tabRDATID)){ | 397 | for(j in 1:length(tabRDATID)){ |
| 398 | ##Putting the ones without duplicates in their new homes | 398 | ##Putting the ones without duplicates in their new homes |
| 399 | if(tabRDATID[j] == 1){ | 399 | if(tabRDATID[j] == 1){ |
| 400 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 400 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
| 401 | } else if(tabRDATID[j] > 1){ | 401 | } else if(tabRDATID[j] > 1){ |
| 402 | ##Averaging duplicates and putting them in their new homes | 402 | ##Averaging duplicates and putting them in their new homes |
| 403 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 403 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
| 404 | } | 404 | } |
| 405 | j <- j + 1 | 405 | j <- j + 1 |
| 406 | } | 406 | } |
| 407 | 407 | ||
| 408 | |||
| 409 | ##Outputting non Z-score Average over genes | ||
| 410 | newoutput <-NuRDATN | ||
| 411 | colnames(newoutput) <- rownames(tabRDATID) | ||
| 412 | nfnewout <- strsplit(alz,"[\\]") %>% | ||
| 413 | .[[1]] %>% | ||
| 414 | .[length(.)] %>% | ||
| 415 | gsub("\\D","",.) %>% | ||
| 416 | c("GSE",.,"newout.txt") %>% | ||
| 417 | paste(collapse = "") | ||
| 418 | noutput <- newoutput %>% | ||
| 419 | t()%>% | ||
| 420 | as.data.frame(.,stringsAsFactors = FALSE) | ||
| 421 | noutput <- cbind(rownames(noutput),noutput) | ||
| 422 | colnames(noutput) <- c("Gene Symbol",subjnam) | ||
| 423 | rownames(noutput) <- NULL | ||
| 424 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) | ||
| 425 | |||
| 426 | |||
| 408 | ##Scaling the Data | 427 | ##Scaling the Data |
| 409 | scrawdat <- NuRDATN%>% | 428 | scrawdat <- NuRDATN%>% |
| 410 | scale() | 429 | scale() |
| 411 | attr(scrawdat,"scaled:center") <- NULL | 430 | attr(scrawdat,"scaled:center") <- NULL |
| 412 | attr(scrawdat,"scaled:scale") <- NULL | 431 | attr(scrawdat,"scaled:scale") <- NULL |
| 413 | colnames(scrawdat) <- rownames(tabRDATID) | 432 | colnames(scrawdat) <- rownames(tabRDATID) |
| 414 | 433 | ||
| 415 | #Outputting the Z-score file | 434 | #Outputting the Z-score file |
| 416 | nfnzsc <- strsplit(alz,"[\\]") %>% | 435 | nfnzsc <- strsplit(alz,"[\\]") %>% |
| 417 | .[[1]] %>% | 436 | .[[1]] %>% |
| 418 | .[length(.)] %>% | 437 | .[length(.)] %>% |
| 419 | gsub("\\D","",.) %>% | 438 | gsub("\\D","",.) %>% |
| 420 | c("GSE",.,"zscore.txt") %>% | 439 | c("GSE",.,"avg.txt") %>% |
| 421 | paste(collapse = "") | 440 | paste(collapse = "") |
| 422 | zscraw <- scrawdat %>% | 441 | zscraw <- scrawdat %>% |
| 423 | t()%>% | 442 | t()%>% |
| 424 | as.data.frame(.,stringsAsFactors = FALSE) | 443 | as.data.frame(.,stringsAsFactors = FALSE) |
| 425 | colnames(zscraw) <- subjnam | 444 | zscraw <- cbind(rownames(zscraw),zscraw) |
| 426 | write.table(zscraw, file = nfnzsc, sep = "\t",col.names = TRUE,row.names = TRUE) | 445 | colnames(zscraw) <- c("Gene Symbol",subjnam) |
| 427 | 446 | rownames(zscraw) <- NULL | |
| 447 | write.table(zscraw, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) | ||
| 448 | |||
| 449 | |||
| 428 | ##Discretized the Data | 450 | ##Discretized the Data |
| 429 | dialzdat <- scrawdat %>% | 451 | dialzdat <- scrawdat %>% |
| 430 | dndat(.) %>% | 452 | dndat(.) %>% |
| 431 | t()%>% | 453 | t()%>% |
| 432 | as.data.frame(.,stringsAsFactors = FALSE) | 454 | as.data.frame(.,stringsAsFactors = FALSE) |
| 433 | colnames(dialzdat) <- rownames(RAWDATNUM) | 455 | colnames(dialzdat) <- rownames(RAWDATNUM) |
| 434 | 456 | ||
| 435 | ##setting "ID_REF" as a new variable | 457 | ##setting "ID_REF" as a new variable |
| 436 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) | 458 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) |
| 437 | colnames(geneNAM) <- "ID_REF" | 459 | colnames(geneNAM) <- "ID_REF" |
| 438 | rownames(dialzdat) <- NULL | 460 | rownames(dialzdat) <- NULL |
| 439 | dialzdat <-bind_cols(geneNAM,dialzdat) | 461 | dialzdat <-bind_cols(geneNAM,dialzdat) |
| 440 | 462 | ||
| 441 | ##NAs in a column | 463 | ##NAs in a column |
| 442 | x <- 2 | 464 | x <- 2 |
| 443 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 465 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
| 444 | nacol[1,1] = "COL_NAs" | 466 | nacol[1,1] = "COL_NAs" |
| 445 | for(x in 2:dim(dialzdat)[2]){ | 467 | for(x in 2:dim(dialzdat)[2]){ |
| 446 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 468 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
| 447 | x <- x + 1 | 469 | x <- x + 1 |
| 448 | } | 470 | } |
| 449 | colnames(nacol) <- colnames(dialzdat) | 471 | colnames(nacol) <- colnames(dialzdat) |
| 450 | dialzdat <- bind_rows(dialzdat,nacol) | 472 | dialzdat <- bind_rows(dialzdat,nacol) |
| 451 | 473 | ||
| 452 | ##NAs in a row | 474 | ##NAs in a row |
| 453 | y <- 1 | 475 | y <- 1 |
| 454 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 476 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
| 455 | for(y in 1:dim(dialzdat)[1]){ | 477 | for(y in 1:dim(dialzdat)[1]){ |
| 456 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 478 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
| 457 | y <- y + 1 | 479 | y <- y + 1 |
| 458 | } | 480 | } |
| 459 | colnames(narowd) <- "ROW_NAs" | 481 | colnames(narowd) <- "ROW_NAs" |
| 460 | dialzdat <- bind_cols(dialzdat,narowd) | 482 | dialzdat <- bind_cols(dialzdat,narowd) |
| 461 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 483 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
| 462 | colnames(RAWWORD) <- colnames(dialzdat) | 484 | colnames(RAWWORD) <- colnames(dialzdat) |
| 463 | ##converting to character so that the clinical can be brought together with discrete data | 485 | ##converting to character so that the clinical can be brought together with discrete data |
| 464 | k <- 2 | 486 | k <- 2 |
| 465 | for(k in 2:dim(dialzdat)[2]-1){ | 487 | for(k in 2:dim(dialzdat)[2]-1){ |
| 466 | dialzdat[,k] <- as.character(dialzdat[,k]) | 488 | dialzdat[,k] <- as.character(dialzdat[,k]) |
| 467 | k <- k + 1 | 489 | k <- k + 1 |
| 468 | } | 490 | } |
| 469 | #The End the full data | 491 | #The End the full data |
| 470 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 492 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
| 471 | 493 | ||
| 472 | #Produces Discrete file | 494 | #Produces Discrete file |
| 473 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 495 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
| 474 | .[[1]] %>% | 496 | .[[1]] %>% |
| 475 | .[length(.)] %>% | 497 | .[length(.)] %>% |
| 476 | gsub("\\D","",.) %>% | 498 | gsub("\\D","",.) %>% |
| 477 | c("GSE",.,"dscrt.txt") %>% | 499 | c("GSE",.,"dscrt.txt") %>% |
| 478 | paste(collapse = "") | 500 | paste(collapse = "") |
| 479 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 501 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
| 480 | n <- n +1 | 502 | n <- n +1 |
| 481 | } | 503 | } |
| 482 | } else if(numDAT == 2){ | 504 | } else if(numDAT == 2){ |
| 483 | #CHOOSE A DATA FILE TO CLEAN OR SEVERAL DATA FILES TO CLEAN | 505 | #CHOOSE A DATA FILE TO CLEAN OR SEVERAL DATA FILES TO CLEAN |
| 484 | 506 | ||
| 485 | #All the files you want to analyze | 507 | #All the files you want to analyze |
| 486 | ANDIS <- select.list(choices = list.files()[GSEfileloc],multiple = TRUE, title = "Choose the file/files you want to analyze:") | 508 | ANDIS <- select.list(choices = list.files()[GSEfileloc],multiple = TRUE, title = "Choose the file/files you want to analyze:") |
| 487 | if(length(ANDIS) == 0){ | 509 | if(length(ANDIS) == 0){ |
| 488 | #Spit out a warning | 510 | #Spit out a warning |
| 489 | warning("You did not select any files and so no cleaning will be performed") | 511 | warning("You did not select any files and so no cleaning will be performed") |
| 490 | } else{ | 512 | } else{ |
| 491 | #indexing the data files | 513 | #indexing the data files |
| 492 | n <- 1 | 514 | n <- 1 |
| 493 | for(n in 1: length(ANDIS)){ | 515 | for(n in 1: length(ANDIS)){ |
| 494 | alz <- ANDIS[n] | 516 | alz <- ANDIS[n] |
| 495 | 517 | ||
| 496 | #Working with the wordy part of the document | 518 | #Working with the wordy part of the document |
| 497 | alzword <- alz %>% | 519 | alzword <- alz %>% |
| 498 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 520 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
| 499 | filter(grepl("!Sample",X1))%>% | 521 | filter(grepl("!Sample",X1))%>% |
| 500 | filter(!grepl("!Sample_contact",X1)) | 522 | filter(!grepl("!Sample_contact",X1)) |
| 501 | 523 | ||
| 502 | #Getting the GPL file | 524 | #Getting the GPL file |
| 503 | genena <- grep("_platform_id",alzword$X1) %>% | 525 | genena <- grep("_platform_id",alzword$X1) %>% |
| 504 | alzword$X2[.] %>% | 526 | alzword$X2[.] %>% |
| 505 | str_trim(.) %>% | 527 | str_trim(.) %>% |
| 506 | paste0("^",.,"\\D") %>% | 528 | paste0("^",.,"\\D") %>% |
| 507 | grep(.,list.files()) %>% | 529 | grep(.,list.files()) %>% |
| 508 | list.files()[.] | 530 | list.files()[.] |
| 509 | 531 | ||
| 510 | #Find out if it is a soft GPL file or not | 532 | #Find out if it is a soft GPL file or not |
| 511 | soft <- strsplit(genena,"[\\|/]") %>% | 533 | soft <- strsplit(genena,"[\\|/]") %>% |
| 512 | .[[1]] %>% | 534 | .[[1]] %>% |
| 513 | .[length(.)] %>% | 535 | .[length(.)] %>% |
| 514 | grepl("soft",.) | 536 | grepl("soft",.) |
| 515 | 537 | ||
| 516 | ##Changing row names and column names: | 538 | ##Changing row names and column names: |
| 517 | ALZWORD <- t(alzword) | 539 | ALZWORD <- t(alzword) |
| 518 | rownames(ALZWORD)=NULL | 540 | rownames(ALZWORD)=NULL |
| 519 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 541 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
| 520 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 542 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
| 521 | ALZWORD <- ALZWORD%>% | 543 | ALZWORD <- ALZWORD%>% |
| 522 | as.data.frame(.,stringsAsFactors = FALSE)%>% | 544 | as.data.frame(.,stringsAsFactors = FALSE)%>% |
| 523 | dplyr::select(-starts_with("col")) | 545 | dplyr::select(-starts_with("col")) |
| 524 | 546 | ||
| 525 | ##Reorganizing information within the columns and final clinical data | 547 | ##Reorganizing information within the columns and final clinical data |
| 526 | ALZWORDF <- cinfo(ALZWORD) | 548 | ALZWORDF <- cinfo(ALZWORD) |
| 527 | 549 | ||
| 528 | 550 | ||
| 529 | #Working with Actual Data part of file | 551 | #Working with Actual Data part of file |
| 530 | alzdat <- alz %>% | 552 | alzdat <- alz %>% |
| 531 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 553 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
| 532 | ALZDAT <- t(alzdat[,-1]) | 554 | ALZDAT <- t(alzdat[,-1]) |
| 533 | rownames(ALZDAT)=NULL | 555 | rownames(ALZDAT)=NULL |
| 534 | 556 | ||
| 535 | ##Is there a clean version of the GPL file available? | 557 | ##Is there a clean version of the GPL file available? |
| 536 | gplnum <- strsplit(genena,"[\\|/]") %>% | 558 | gplnum <- strsplit(genena,"[\\|/]") %>% |
| 537 | .[[1]] %>% | 559 | .[[1]] %>% |
| 538 | .[length(.)] %>% | 560 | .[length(.)] %>% |
| 539 | gsub("\\D","",.) | 561 | gsub("\\D","",.) |
| 540 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 562 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
| 541 | if(clfileex >= 1){ | 563 | if(clfileex >= 1){ |
| 542 | #use the clean version | 564 | #use the clean version |
| 543 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 565 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
| 544 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 566 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
| 545 | 567 | ||
| 546 | } else if(clfileex == 0){ | 568 | } else if(clfileex == 0){ |
| 547 | ##Lets Create a clean version | 569 | ##Lets Create a clean version |
| 548 | 570 | ||
| 549 | ##Gene ID to Gene Name | 571 | ##Gene ID to Gene Name |
| 550 | if(soft == TRUE){ | 572 | if(soft == TRUE){ |
| 551 | #Check to see if there is already a file containing information on soft files | 573 | #Check to see if there is already a file containing information on soft files |
| 552 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 574 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
| 553 | if(fileex == 1){ | 575 | if(fileex == 1){ |
| 554 | #Check to see if this GPL soft file has been used before | 576 | #Check to see if this GPL soft file has been used before |
| 555 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 577 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 556 | .$GPL_FILE_NUM%>% | 578 | .$GPL_FILE_NUM%>% |
| 557 | grepl(gplnum,.) %>% | 579 | grepl(gplnum,.) %>% |
| 558 | sum() | 580 | sum() |
| 559 | if(IDF == 1){ | 581 | if(IDF == 1){ |
| 560 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 582 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 561 | .$GPL_FILE_NUM%>% | 583 | .$GPL_FILE_NUM%>% |
| 562 | grep(gplnum,.) | 584 | grep(gplnum,.) |
| 563 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 585 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
| 564 | .$LOC_ID %>% | 586 | .$LOC_ID %>% |
| 565 | .[IDLOCAL] | 587 | .[IDLOCAL] |
| 566 | geneIDNam <- genena %>% | 588 | geneIDNam <- genena %>% |
| 567 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 589 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
| 568 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 590 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
| 569 | } else if(IDF == 0){ | 591 | } else if(IDF == 0){ |
| 570 | #No information on this particular GPL file | 592 | #No information on this particular GPL file |
| 571 | idLOCGPL <- genena %>% | 593 | idLOCGPL <- genena %>% |
| 572 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 594 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
| 573 | t(.) %>% | 595 | t(.) %>% |
| 574 | grep("^ID\\s*$",.) %>% | 596 | grep("^ID\\s*$",.) %>% |
| 575 | -1 | 597 | -1 |
| 576 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 598 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
| 577 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 599 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
| 578 | geneIDNam <- genena %>% | 600 | geneIDNam <- genena %>% |
| 579 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 601 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
| 580 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 602 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
| 581 | } | 603 | } |
| 582 | } else if(fileex == 0){ | 604 | } else if(fileex == 0){ |
| 583 | #We must create a file that we can access for later use | 605 | #We must create a file that we can access for later use |
| 584 | idLOCGPL <- genena %>% | 606 | idLOCGPL <- genena %>% |
| 585 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 607 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
| 586 | t(.) %>% | 608 | t(.) %>% |
| 587 | grep("^ID\\s*$",.) %>% | 609 | grep("^ID\\s*$",.) %>% |
| 588 | -1 | 610 | -1 |
| 589 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 611 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
| 590 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 612 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
| 591 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 613 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
| 592 | geneIDNam <- genena %>% | 614 | geneIDNam <- genena %>% |
| 593 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 615 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
| 594 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 616 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
| 595 | } | 617 | } |
| 596 | } else if(soft == FALSE){ | 618 | } else if(soft == FALSE){ |
| 597 | geneIDNam <- genena %>% | 619 | geneIDNam <- genena %>% |
| 598 | read_delim(delim="\t",comment = "#")%>% | 620 | read_delim(delim="\t",comment = "#")%>% |
| 599 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 621 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
| 600 | } | 622 | } |
| 601 | 623 | ||
| 602 | ##Labeling the gene IDs without names | 624 | ##Labeling the gene IDs without names |
| 603 | geneIDNam <- NAFIXING(geneIDNam) | 625 | geneIDNam <- NAFIXING(geneIDNam) |
| 604 | 626 | ||
| 605 | ##remove the whitespace | 627 | ##remove the whitespace |
| 606 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 628 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
| 607 | 629 | ||
| 608 | ##Here is the clean version | 630 | ##Here is the clean version |
| 609 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 631 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
| 610 | } | 632 | } |
| 611 | 633 | ||
| 612 | 634 | ||
| 613 | 635 | ||
| 614 | ##Changing the gene ID to gene name | 636 | ##Changing the gene ID to gene name |
| 615 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) | 637 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) |
| 616 | colnames(ALZDAT) = ALZDAT1[1,] | 638 | colnames(ALZDAT) = ALZDAT1[1,] |
| 617 | 639 | ||
| 618 | 640 | ||
| 619 | ##Adjusting the column names aka the gene names | 641 | ##Adjusting the column names aka the gene names |
| 620 | colnames(ALZDAT) <- gcnames(ALZDAT) | 642 | colnames(ALZDAT) <- gcnames(ALZDAT) |
| 621 | 643 | ||
| 622 | 644 | ||
| 623 | #Full RAW Data | 645 | #Full RAW Data |
| 624 | Fullalzdwr <- ALZDAT %>% | 646 | Fullalzdwr <- ALZDAT %>% |
| 625 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 647 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
| 626 | cbind(ALZWORDF,.) | 648 | cbind(ALZWORDF,.) |
| 627 | 649 | ||
| 628 | #Raw file is output | 650 | #Raw file is output |
| 629 | nfnaex <- strsplit(alz,"[\\]") %>% | 651 | nfnaex <- strsplit(alz,"[\\]") %>% |
| 630 | .[[1]] %>% | 652 | .[[1]] %>% |
| 631 | .[length(.)] %>% | 653 | .[length(.)] %>% |
| 632 | gsub("\\D","",.) %>% | 654 | gsub("\\D","",.) %>% |
| 633 | c("GSE",.,"aftexcel.txt") %>% | 655 | c("GSE",.,"aftexcel.txt") %>% |
| 634 | paste(collapse = "") | 656 | paste(collapse = "") |
| 635 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 657 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
| 636 | 658 | ||
| 637 | 659 | ||
| 638 | 660 | ||
| 639 | #Now for the discretization part | 661 | #Now for the discretization part |
| 640 | ##get the wordy part again | 662 | ##get the wordy part again |
| 641 | rawword <- t(ALZWORDF) | 663 | rawword <- t(ALZWORDF) |
| 642 | 664 | ||
| 643 | ##where is ID_REF located | 665 | ##where is ID_REF located |
| 644 | hereim <- grep("ID_REF",rownames(rawword)) | 666 | hereim <- grep("ID_REF",rownames(rawword)) |
| 645 | 667 | ||
| 646 | ##Subject Names GSM... | 668 | ##Subject Names GSM... |
| 647 | subjnam <- rawword[hereim,] | 669 | subjnam <- rawword[hereim,] |
| 648 | 670 | ||
| 649 | ##Getting the names for the rows | 671 | ##Getting the names for the rows |
| 650 | namedarows <- rownames(rawword)[-hereim] %>% | 672 | namedarows <- rownames(rawword)[-hereim] %>% |
| 651 | as.data.frame(.,stringsAsFactors = FALSE) | 673 | as.data.frame(.,stringsAsFactors = FALSE) |
| 652 | RAWWORD <- rawword[-hereim,] %>% | 674 | RAWWORD <- rawword[-hereim,] %>% |
| 653 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 675 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
| 654 | bind_cols(namedarows,.) | 676 | bind_cols(namedarows,.) |
| 655 | z <- 1 | 677 | z <- 1 |
| 656 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 678 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
| 657 | for(z in 1:dim(RAWWORD)[1]){ | 679 | for(z in 1:dim(RAWWORD)[1]){ |
| 658 | if(sum(is.na(RAWWORD[z,])) > 0){ | 680 | if(sum(is.na(RAWWORD[z,])) > 0){ |
| 659 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 681 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
| 660 | } | 682 | } |
| 661 | if(length(grep("NA",RAWWORD[z,])) > 0){ | 683 | if(length(grep("NA",RAWWORD[z,])) > 0){ |
| 662 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] | 684 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] |
| 663 | } | 685 | } |
| 664 | z <- z + 1 | 686 | z <- z + 1 |
| 665 | } | 687 | } |
| 666 | 688 | ||
| 667 | colnames(naroww) <- "ROW_NAs" | 689 | colnames(naroww) <- "ROW_NAs" |
| 668 | RAWWORD <- bind_cols(RAWWORD,naroww) | 690 | RAWWORD <- bind_cols(RAWWORD,naroww) |
| 669 | 691 | ||
| 670 | 692 | ||
| 671 | roALZna <- t(ALZDAT) %>% | 693 | roALZna <- t(ALZDAT) %>% |
| 672 | rownames(.) %>% | 694 | rownames(.) %>% |
| 673 | as.data.frame(.,stringsAsFactors = FALSE) | 695 | as.data.frame(.,stringsAsFactors = FALSE) |
| 674 | colnames(roALZna) <- "ID_REF" | 696 | colnames(roALZna) <- "ID_REF" |
| 675 | 697 | ||
| 676 | RAWDAT <- t(ALZDAT) %>% | 698 | RAWDAT <- t(ALZDAT) %>% |
| 677 | as.data.frame(.,stringsAsFactors = FALSE) | 699 | as.data.frame(.,stringsAsFactors = FALSE) |
| 678 | colnames(RAWDAT) <- NULL | 700 | colnames(RAWDAT) <- NULL |
| 679 | rownames(RAWDAT) <- NULL | 701 | rownames(RAWDAT) <- NULL |
| 680 | 702 | ||
| 681 | RAWDAT2 <- RAWDAT %>% | 703 | RAWDAT2 <- RAWDAT %>% |
| 682 | cbind(roALZna,.) %>% | 704 | cbind(roALZna,.) %>% |
| 683 | dplyr::arrange(.,ID_REF) | 705 | dplyr::arrange(.,ID_REF) |
| 684 | 706 | ||
| 685 | ##Editing the file for R processing | 707 | ##Editing the file for R processing |
| 686 | RAWDATID <- RAWDAT2[,1] %>% | 708 | RAWDATID <- RAWDAT2[,1] %>% |
| 687 | as.matrix(.) | 709 | as.matrix(.) |
| 688 | 710 | ||
| 689 | RAWDATNUM <- RAWDAT2[,-1] %>% | 711 | RAWDATNUM <- RAWDAT2[,-1] %>% |
| 690 | mapply(.,FUN = as.numeric) %>% | 712 | mapply(.,FUN = as.numeric) %>% |
| 691 | t(.) | 713 | t(.) |
| 692 | 714 | ||
| 693 | ##Consolidating genes with the same name | 715 | ##Consolidating genes with the same name |
| 694 | ###create empty matrix of size equal to tabRDATID | 716 | ###create empty matrix of size equal to tabRDATID |
| 695 | tabRDATID <- table(RAWDATID) | 717 | tabRDATID <- table(RAWDATID) |
| 696 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 718 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
| 697 | j <- 1 | 719 | j <- 1 |
| 698 | for(j in 1:length(tabRDATID)){ | 720 | for(j in 1:length(tabRDATID)){ |
| 699 | ##Putting the ones without duplicates in their new homes | 721 | ##Putting the ones without duplicates in their new homes |
| 700 | if(tabRDATID[j] == 1){ | 722 | if(tabRDATID[j] == 1){ |
| 701 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 723 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
| 702 | } else if(tabRDATID[j] > 1){ | 724 | } else if(tabRDATID[j] > 1){ |
| 703 | ##Averaging duplicates and putting them in their new homes | 725 | ##Averaging duplicates and putting them in their new homes |
| 704 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 726 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
| 705 | } | 727 | } |
| 706 | j <- j + 1 | 728 | j <- j + 1 |
| 707 | } | 729 | } |
| 708 | 730 | ||
| 709 | ##Scaling the Data | 731 | ##Outputting non Z-score Average over genes |
| 710 | scrawdat <- NuRDATN%>% | 732 | newoutput <-NuRDATN |
| 711 | scale() | 733 | colnames(newoutput) <- rownames(tabRDATID) |
| 712 | attr(scrawdat,"scaled:center") <- NULL | 734 | nfnewout <- strsplit(alz,"[\\]") %>% |
| 713 | attr(scrawdat,"scaled:scale") <- NULL | 735 | .[[1]] %>% |
| 714 | colnames(scrawdat) <- rownames(tabRDATID) | 736 | .[length(.)] %>% |
| 715 | 737 | gsub("\\D","",.) %>% | |
| 716 | #Outputting the Z-score file | 738 | c("GSE",.,"avg.txt") %>% |
| 717 | nfnzsc <- strsplit(alz,"[\\]") %>% | 739 | paste(collapse = "") |
| 718 | .[[1]] %>% | 740 | noutput <- newoutput %>% |
| 719 | .[length(.)] %>% | 741 | t()%>% |
| 720 | gsub("\\D","",.) %>% | 742 | as.data.frame(.,stringsAsFactors = FALSE) |
| 721 | c("GSE",.,"zscore.txt") %>% | 743 | noutput <- cbind(rownames(noutput),noutput) |
| 722 | paste(collapse = "") | 744 | colnames(noutput) <- c("Gene Symbol",subjnam) |
| 723 | zscraw <- scrawdat %>% | 745 | rownames(noutput) <- NULL |
| 724 | t()%>% | 746 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) |
| 725 | as.data.frame(.,stringsAsFactors = FALSE) | 747 | |
| 726 | colnames(zscraw) <- subjnam | 748 | |
| 727 | write.table(zscraw, file = nfnzsc, sep = "\t",col.names = TRUE,row.names = TRUE) | 749 | ##Scaling the Data |
| 750 | scrawdat <- NuRDATN%>% | ||
| 751 | scale() | ||
| 752 | attr(scrawdat,"scaled:center") <- NULL | ||
| 753 | attr(scrawdat,"scaled:scale") <- NULL | ||
| 754 | colnames(scrawdat) <- rownames(tabRDATID) | ||
| 755 | |||
| 756 | #Outputting the Z-score file | ||
| 757 | nfnzsc <- strsplit(alz,"[\\]") %>% | ||
| 758 | .[[1]] %>% | ||
| 759 | .[length(.)] %>% | ||
| 760 | gsub("\\D","",.) %>% | ||
| 761 | c("GSE",.,"zscore.txt") %>% | ||
| 762 | paste(collapse = "") | ||
| 763 | zscraw <- scrawdat %>% | ||
| 764 | t()%>% | ||
| 765 | as.data.frame(.,stringsAsFactors = FALSE) | ||
| 766 | zscraw <- cbind(rownames(zscraw),zscraw) | ||
| 767 | colnames(zscraw) <- c("Gene Symbol",subjnam) | ||
| 768 | rownames(zscraw) <- NULL | ||
| 769 | write.table(zscraw, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) | ||
| 728 | 770 | ||
| 729 | ##Discretized the Data | 771 | ##Discretized the Data |
| 730 | dialzdat <- scrawdat %>% | 772 | dialzdat <- scrawdat %>% |
| 731 | dndat(.) %>% | 773 | dndat(.) %>% |
| 732 | t()%>% | 774 | t()%>% |
| 733 | as.data.frame(.,stringsAsFactors = FALSE) | 775 | as.data.frame(.,stringsAsFactors = FALSE) |
| 734 | colnames(dialzdat) <- rownames(RAWDATNUM) | 776 | colnames(dialzdat) <- rownames(RAWDATNUM) |
| 735 | 777 | ||
| 736 | ##setting "ID_REF" as a new variable | 778 | ##setting "ID_REF" as a new variable |
| 737 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) | 779 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) |
| 738 | colnames(geneNAM) <- "ID_REF" | 780 | colnames(geneNAM) <- "ID_REF" |
| 739 | rownames(dialzdat) <- NULL | 781 | rownames(dialzdat) <- NULL |
| 740 | dialzdat <-bind_cols(geneNAM,dialzdat) | 782 | dialzdat <-bind_cols(geneNAM,dialzdat) |
| 741 | 783 | ||
| 742 | ##NAs in a column | 784 | ##NAs in a column |
| 743 | x <- 2 | 785 | x <- 2 |
| 744 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 786 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
| 745 | nacol[1,1] = "COL_NAs" | 787 | nacol[1,1] = "COL_NAs" |
| 746 | for(x in 2:dim(dialzdat)[2]){ | 788 | for(x in 2:dim(dialzdat)[2]){ |
| 747 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 789 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
| 748 | x <- x + 1 | 790 | x <- x + 1 |
| 749 | } | 791 | } |
| 750 | colnames(nacol) <- colnames(dialzdat) | 792 | colnames(nacol) <- colnames(dialzdat) |
| 751 | dialzdat <- bind_rows(dialzdat,nacol) | 793 | dialzdat <- bind_rows(dialzdat,nacol) |
| 752 | 794 | ||
| 753 | ##NAs in a row | 795 | ##NAs in a row |
| 754 | y <- 1 | 796 | y <- 1 |
| 755 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 797 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
| 756 | for(y in 1:dim(dialzdat)[1]){ | 798 | for(y in 1:dim(dialzdat)[1]){ |
| 757 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 799 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
| 758 | y <- y + 1 | 800 | y <- y + 1 |
| 759 | } | 801 | } |
| 760 | colnames(narowd) <- "ROW_NAs" | 802 | colnames(narowd) <- "ROW_NAs" |
| 761 | dialzdat <- bind_cols(dialzdat,narowd) | 803 | dialzdat <- bind_cols(dialzdat,narowd) |
| 762 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 804 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
| 763 | colnames(RAWWORD) <- colnames(dialzdat) | 805 | colnames(RAWWORD) <- colnames(dialzdat) |
| 764 | ##converting to character so that the clinical can be brought together with discrete data | 806 | ##converting to character so that the clinical can be brought together with discrete data |
| 765 | k <- 2 | 807 | k <- 2 |
| 766 | for(k in 2:dim(dialzdat)[2]-1){ | 808 | for(k in 2:dim(dialzdat)[2]-1){ |
| 767 | dialzdat[,k] <- as.character(dialzdat[,k]) | 809 | dialzdat[,k] <- as.character(dialzdat[,k]) |
| 768 | k <- k + 1 | 810 | k <- k + 1 |
| 769 | } | 811 | } |
| 770 | #The End the full data | 812 | #The End the full data |
| 771 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 813 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
| 772 | 814 | ||
| 773 | #Produces Discrete file | 815 | #Produces Discrete file |
| 774 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 816 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
| 775 | .[[1]] %>% | 817 | .[[1]] %>% |
| 776 | .[length(.)] %>% | 818 | .[length(.)] %>% |
| 777 | gsub("\\D","",.) %>% | 819 | gsub("\\D","",.) %>% |
| 778 | c("GSE",.,"dscrt.txt") %>% | 820 | c("GSE",.,"dscrt.txt") %>% |
| 779 | paste(collapse = "") | 821 | paste(collapse = "") |
| 780 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 822 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
| 781 | 823 | ||
| 782 | 824 | ||
| 783 | n <- n + 1 | 825 | n <- n + 1 |
| 784 | } | 826 | } |
| 785 | } | 827 | } |
| 786 | } | 828 | } |
| 787 | } | 829 | } |
| 788 | #The Rest of this code will be used every time you want to change a data set | 830 | #The Rest of this code will be used every time you want to change a data set |
| 789 | THEFT() | 831 | THEFT() |