Commit d0434e850280a47cc524d3a1014b671faba506f9
1 parent
3a23b98ac6
Exists in
master
Update outputting 4 files:
aftexcel,avg,zscore,dscrt
Showing
1 changed file
with
4 additions
and
4 deletions
Show diff stats
RAutoClDs.R
1 | 1 | ||
2 | #Efrain H. Gonzalez | 2 | #Efrain H. Gonzalez |
3 | #6/22/2017 | 3 | #6/22/2017 |
4 | options(digits = 11) | 4 | options(digits = 11) |
5 | #Libraries required to run the code | 5 | #Libraries required to run the code |
6 | library(pryr) | 6 | library(pryr) |
7 | library(MASS) | 7 | library(MASS) |
8 | library(dplyr) | 8 | library(dplyr) |
9 | library(tidyr) | 9 | library(tidyr) |
10 | library(readr) | 10 | library(readr) |
11 | library(stringr) | 11 | library(stringr) |
12 | 12 | ||
13 | 13 | ||
14 | #Necessary Functions | 14 | #Necessary Functions |
15 | #1#Function for handling the changing of row names and column names | 15 | #1#Function for handling the changing of row names and column names |
16 | chngrownm <- function(mat){ | 16 | chngrownm <- function(mat){ |
17 | row <- dim(mat)[1] | 17 | row <- dim(mat)[1] |
18 | col <- dim(mat)[2] | 18 | col <- dim(mat)[2] |
19 | e <- 1 | 19 | e <- 1 |
20 | r <- 1 | 20 | r <- 1 |
21 | a <- 1 | 21 | a <- 1 |
22 | h <- 1 | 22 | h <- 1 |
23 | g <- 1 | 23 | g <- 1 |
24 | o <- 1 | 24 | o <- 1 |
25 | for(e in 1:col){ | 25 | for(e in 1:col){ |
26 | if("!Sample_source_name_ch1"==mat[1,e]){ | 26 | if("!Sample_source_name_ch1"==mat[1,e]){ |
27 | colnames(mat)[e] <- "Brain_Region" | 27 | colnames(mat)[e] <- "Brain_Region" |
28 | } else if("!Sample_title" == mat[1,e]){ | 28 | } else if("!Sample_title" == mat[1,e]){ |
29 | colnames(mat)[e] <- "Title" | 29 | colnames(mat)[e] <- "Title" |
30 | } else if("!Sample_geo_accession" == mat[1,e]){ | 30 | } else if("!Sample_geo_accession" == mat[1,e]){ |
31 | colnames(mat)[e] <- "ID_REF" | 31 | colnames(mat)[e] <- "ID_REF" |
32 | } else{ | 32 | } else{ |
33 | if(grepl("Sex|gender|Gender|sex",mat[2,e])==TRUE){ | 33 | if(grepl("Sex|gender|Gender|sex",mat[2,e])==TRUE){ |
34 | colnames(mat)[e] <- paste0("Sex",r) | 34 | colnames(mat)[e] <- paste0("Sex",r) |
35 | r = r + 1 | 35 | r = r + 1 |
36 | } | 36 | } |
37 | if(grepl("postmorteminterval|PMI|pmi|interval",mat[2,e])==TRUE){ | 37 | if(grepl("postmorteminterval|PMI|pmi|interval",mat[2,e])==TRUE){ |
38 | colnames(mat)[e] <- paste0("PMI",a) | 38 | colnames(mat)[e] <- paste0("PMI",a) |
39 | a = a + 1 | 39 | a = a + 1 |
40 | } | 40 | } |
41 | if(grepl("age|Age|AGE",mat[2,e])==TRUE){ | 41 | if(grepl("age|Age|AGE",mat[2,e])==TRUE){ |
42 | colnames(mat)[e] <- paste0("Age",h) | 42 | colnames(mat)[e] <- paste0("Age",h) |
43 | h = h + 1 | 43 | h = h + 1 |
44 | } | 44 | } |
45 | if(grepl("braak|b&b",mat[2,e])==TRUE){ | 45 | if(grepl("braak|b&b",mat[2,e])==TRUE){ |
46 | colnames(mat)[e] <- paste0("Braak",g) | 46 | colnames(mat)[e] <- paste0("Braak",g) |
47 | g = g + 1 | 47 | g = g + 1 |
48 | } | 48 | } |
49 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,e])==TRUE){ | 49 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control|Normal",mat[2,e])==TRUE){ |
50 | colnames(mat)[e] <- paste0("Group",o) | 50 | colnames(mat)[e] <- paste0("Group",o) |
51 | o = o + 1 | 51 | o = o + 1 |
52 | } | 52 | } |
53 | 53 | ||
54 | } | 54 | } |
55 | e = e + 1 | 55 | e = e + 1 |
56 | } | 56 | } |
57 | mat | 57 | mat |
58 | } | 58 | } |
59 | 59 | ||
60 | #2#Function for reorganizing information within the columns | 60 | #2#Function for reorganizing information within the columns |
61 | cinfo <- function(mat){ | 61 | cinfo <- function(mat){ |
62 | col <- dim(mat)[2] | 62 | col <- dim(mat)[2] |
63 | j <-2 | 63 | j <-2 |
64 | for(j in 2:col){ | 64 | for(j in 2:col){ |
65 | if(grepl("Group",colnames(mat)[j]) == TRUE){ | 65 | if(grepl("Group",colnames(mat)[j]) == TRUE){ |
66 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) | 66 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) |
67 | } else if(grepl("Age",colnames(mat)[j])==TRUE){ | 67 | } else if(grepl("Age",colnames(mat)[j])==TRUE){ |
68 | mat[,j] <- gsub("\\D","",mat[,j])%>% | 68 | mat[,j] <- gsub("\\D","",mat[,j])%>% |
69 | as.integer() | 69 | as.integer() |
70 | } else if(grepl("Sex",colnames(mat)[j])==TRUE){ | 70 | } else if(grepl("Sex",colnames(mat)[j])==TRUE){ |
71 | mat[,j] <- gsub(".+:\\s","",mat[,j]) | 71 | mat[,j] <- gsub(".+:\\s","",mat[,j]) |
72 | } else if(grepl("PMI",colnames(mat)[j])==TRUE){ | 72 | } else if(grepl("PMI",colnames(mat)[j])==TRUE){ |
73 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% | 73 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% |
74 | as.numeric() | 74 | as.numeric() |
75 | } else if(grepl("Braak",colnames(mat)[j])==TRUE){ | 75 | } else if(grepl("Braak",colnames(mat)[j])==TRUE){ |
76 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% | 76 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% |
77 | as.roman()%>% | 77 | as.roman()%>% |
78 | as.integer() | 78 | as.integer() |
79 | } | 79 | } |
80 | j=j+1 | 80 | j=j+1 |
81 | } | 81 | } |
82 | mat | 82 | mat |
83 | } | 83 | } |
84 | 84 | ||
85 | #3#Function for labeling the gene IDs without names | 85 | #3#Function for labeling the gene IDs without names |
86 | NAFIXING <- function(GIDNAM){ | 86 | NAFIXING <- function(GIDNAM){ |
87 | row <- dim(GIDNAM)[1] | 87 | row <- dim(GIDNAM)[1] |
88 | i <- 1 | 88 | i <- 1 |
89 | for(i in 1:row){ | 89 | for(i in 1:row){ |
90 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ | 90 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ |
91 | GIDNAM[i,2] <- GIDNAM[i,1] | 91 | GIDNAM[i,2] <- GIDNAM[i,1] |
92 | } | 92 | } |
93 | i <- i + 1 | 93 | i <- i + 1 |
94 | } | 94 | } |
95 | GIDNAM | 95 | GIDNAM |
96 | } | 96 | } |
97 | 97 | ||
98 | #4#Function for changing the gene ID to gene name | 98 | #4#Function for changing the gene ID to gene name |
99 | cgeneID <- function(GeneName,DATA){ | 99 | cgeneID <- function(GeneName,DATA){ |
100 | nj <- t(GeneName) | 100 | nj <- t(GeneName) |
101 | nq <- t(DATA) | 101 | nq <- t(DATA) |
102 | colGene <- dim(nj)[2] | 102 | colGene <- dim(nj)[2] |
103 | colDATA <- dim(nq)[2] | 103 | colDATA <- dim(nq)[2] |
104 | j <- 1 | 104 | j <- 1 |
105 | for(j in 1:colDATA){ | 105 | for(j in 1:colDATA){ |
106 | #where is that gene id located within the GPL file | 106 | #where is that gene id located within the GPL file |
107 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) | 107 | chngreq <- grep(paste0("^",nq[1,j],"$"),nj[1,]) |
108 | if(is.na(sum(chngreq))==FALSE){ | 108 | if(is.na(sum(chngreq))==FALSE){ |
109 | if(sum(chngreq) > 0){ | 109 | if(sum(chngreq) > 0){ |
110 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) | 110 | nq[1,j] <- gsub(paste0("^",nq[1,j],"$"),nj[2,chngreq],nq[1,j]) |
111 | } | 111 | } |
112 | } | 112 | } |
113 | j <- j + 1 | 113 | j <- j + 1 |
114 | } | 114 | } |
115 | nq | 115 | nq |
116 | } | 116 | } |
117 | #cgeneID <- function(GeneName,DATA){ | 117 | #cgeneID <- function(GeneName,DATA){ |
118 | # colGene <- dim(GeneName)[2] | 118 | # colGene <- dim(GeneName)[2] |
119 | # j <- 1 | 119 | # j <- 1 |
120 | # for(j in 1:colGene){ | 120 | # for(j in 1:colGene){ |
121 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) | 121 | # chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) |
122 | # if(is.na(sum(chngsreq))==FALSE){ | 122 | # if(is.na(sum(chngsreq))==FALSE){ |
123 | # if(sum(chngsreq) > 0){ | 123 | # if(sum(chngsreq) > 0){ |
124 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) | 124 | # DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) |
125 | # } | 125 | # } |
126 | # } | 126 | # } |
127 | # j = j+1 | 127 | # j = j+1 |
128 | # } | 128 | # } |
129 | # DATA | 129 | # DATA |
130 | #} | 130 | #} |
131 | 131 | ||
132 | #5#Function for adjusting the gene names | 132 | #5#Function for adjusting the gene names |
133 | gcnames <- function(DiData,usecol=1){ | 133 | gcnames <- function(DiData,usecol=1){ |
134 | nuruns <- dim(DiData)[2] | 134 | nuruns <- dim(DiData)[2] |
135 | i = 1 | 135 | i = 1 |
136 | nwnam <- rep("0",length.out=nuruns) | 136 | nwnam <- rep("0",length.out=nuruns) |
137 | for(i in 1:nuruns){ | 137 | for(i in 1:nuruns){ |
138 | if(length(strsplit(colnames(DiData)[i],"///|//")[[1]]) >= usecol){ | 138 | if(length(strsplit(colnames(DiData)[i],"///|//")[[1]]) >= usecol){ |
139 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][usecol]) | 139 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][usecol]) |
140 | } else{ | 140 | } else{ |
141 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][1]) | 141 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///|//")[[1]][1]) |
142 | } | 142 | } |
143 | 143 | ||
144 | } | 144 | } |
145 | nwnam | 145 | nwnam |
146 | 146 | ||
147 | } | 147 | } |
148 | 148 | ||
149 | #6# Function for discretizing the data | 149 | #6# Function for discretizing the data |
150 | dndat <- function(NDATA){ | 150 | dndat <- function(NDATA){ |
151 | rownd <- dim(NDATA)[1] | 151 | rownd <- dim(NDATA)[1] |
152 | colnd <- dim(NDATA)[2] | 152 | colnd <- dim(NDATA)[2] |
153 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) | 153 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) |
154 | colnames(DDATA) <- colnames(NDATA) | 154 | colnames(DDATA) <- colnames(NDATA) |
155 | i <- 1 | 155 | i <- 1 |
156 | for(i in 1:rownd){ | 156 | for(i in 1:rownd){ |
157 | j <- 1 | 157 | j <- 1 |
158 | for(j in 1:colnd){ | 158 | for(j in 1:colnd){ |
159 | if(is.na(NDATA[i,j])==FALSE){ | 159 | if(is.na(NDATA[i,j])==FALSE){ |
160 | 160 | ||
161 | if(NDATA[i,j] < -1){ | 161 | if(NDATA[i,j] < -1){ |
162 | DDATA[i,j]=0L | 162 | DDATA[i,j]=0L |
163 | } else if(NDATA[i,j] > 1){ | 163 | } else if(NDATA[i,j] > 1){ |
164 | DDATA[i,j]=2L | 164 | DDATA[i,j]=2L |
165 | } else if(-1 <= NDATA[i,j] && NDATA[i,j] <= 1){ | 165 | } else if(-1 <= NDATA[i,j] && NDATA[i,j] <= 1){ |
166 | DDATA[i,j]=1L | 166 | DDATA[i,j]=1L |
167 | } | 167 | } |
168 | } else{ | 168 | } else{ |
169 | DDATA[i,j] = NDATA[i,j] | 169 | DDATA[i,j] = NDATA[i,j] |
170 | } | 170 | } |
171 | j = j + 1 | 171 | j = j + 1 |
172 | } | 172 | } |
173 | i = i + 1 | 173 | i = i + 1 |
174 | } | 174 | } |
175 | DDATA | 175 | DDATA |
176 | } | 176 | } |
177 | 177 | ||
178 | 178 | ||
179 | #MajorFunction#This is the function that does everything else | 179 | #MajorFunction#This is the function that does everything else |
180 | THEFT <- function(){ | 180 | THEFT <- function(){ |
181 | #Set working directory based on the directory of the series matrix file Currently only works for windows | 181 | #Set working directory based on the directory of the series matrix file Currently only works for windows |
182 | wd <- getwd() | 182 | wd <- getwd() |
183 | #list.files() | 183 | #list.files() |
184 | #gsub("wd",wd,"Do you want to clean all data files in the directory wd?") | 184 | #gsub("wd",wd,"Do you want to clean all data files in the directory wd?") |
185 | numDAT <- switch(EXPR = menu(choices = c("Yes","No"),title = gsub("wd",wd,"Do you want to clean all data files in the directory wd?")) + 1,cat("Nothing done\n"),1L,2L) | 185 | numDAT <- switch(EXPR = menu(choices = c("Yes","No"),title = gsub("wd",wd,"Do you want to clean all data files in the directory wd?")) + 1,cat("Nothing done\n"),1L,2L) |
186 | GSEfileloc <- grep("^GSE.+\\.txt\\.gz$",list.files()) | 186 | GSEfileloc <- grep("^GSE.+\\.txt\\.gz$",list.files()) |
187 | GSEfloc <- list.files()[GSEfileloc] | 187 | GSEfloc <- list.files()[GSEfileloc] |
188 | #ALL DATA FILES WILL BE CLEANED | 188 | #ALL DATA FILES WILL BE CLEANED |
189 | if(numDAT == 1){ | 189 | if(numDAT == 1){ |
190 | #indexing the data files | 190 | #indexing the data files |
191 | n <- 1 | 191 | n <- 1 |
192 | for(n in 1: length(GSEfloc)){ | 192 | for(n in 1: length(GSEfloc)){ |
193 | alz <- GSEfloc[n] | 193 | alz <- GSEfloc[n] |
194 | 194 | ||
195 | #Working with the wordy part of the document | 195 | #Working with the wordy part of the document |
196 | alzword <- alz %>% | 196 | alzword <- alz %>% |
197 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 197 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
198 | filter(grepl("!Sample",X1))%>% | 198 | filter(grepl("!Sample",X1))%>% |
199 | filter(!grepl("!Sample_contact",X1)) | 199 | filter(!grepl("!Sample_contact",X1)) |
200 | 200 | ||
201 | #Getting the GPL file | 201 | #Getting the GPL file |
202 | genena <- grep("_platform_id",alzword$X1) %>% | 202 | genena <- grep("_platform_id",alzword$X1) %>% |
203 | alzword$X2[.] %>% | 203 | alzword$X2[.] %>% |
204 | str_trim(.) %>% | 204 | str_trim(.) %>% |
205 | paste0("^",.,"\\D") %>% | 205 | paste0("^",.,"\\D") %>% |
206 | grep(.,list.files()) %>% | 206 | grep(.,list.files()) %>% |
207 | list.files()[.] | 207 | list.files()[.] |
208 | 208 | ||
209 | #Find out if it is a soft GPL file or not | 209 | #Find out if it is a soft GPL file or not |
210 | soft <- strsplit(genena,"[\\|/]") %>% | 210 | soft <- strsplit(genena,"[\\|/]") %>% |
211 | .[[1]] %>% | 211 | .[[1]] %>% |
212 | .[length(.)] %>% | 212 | .[length(.)] %>% |
213 | grepl("soft",.) | 213 | grepl("soft",.) |
214 | 214 | ||
215 | ##Changing row names and column names: | 215 | ##Changing row names and column names: |
216 | ALZWORD <- t(alzword) | 216 | ALZWORD <- t(alzword) |
217 | rownames(ALZWORD)=NULL | 217 | rownames(ALZWORD)=NULL |
218 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 218 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
219 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 219 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
220 | ALZWORD <- ALZWORD%>% | 220 | ALZWORD <- ALZWORD%>% |
221 | as.data.frame(.,stringsAsFactors = FALSE)%>% | 221 | as.data.frame(.,stringsAsFactors = FALSE)%>% |
222 | dplyr::select(-starts_with("col")) | 222 | dplyr::select(-starts_with("col")) |
223 | 223 | ||
224 | ##Reorganizing information within the columns and final clinical data | 224 | ##Reorganizing information within the columns and final clinical data |
225 | ALZWORDF <- cinfo(ALZWORD) | 225 | ALZWORDF <- cinfo(ALZWORD) |
226 | 226 | ||
227 | 227 | ||
228 | #Working with Actual Data part of file | 228 | #Working with Actual Data part of file |
229 | alzdat <- alz %>% | 229 | alzdat <- alz %>% |
230 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 230 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
231 | ALZDAT <- t(alzdat[,-1]) | 231 | ALZDAT <- t(alzdat[,-1]) |
232 | rownames(ALZDAT)=NULL | 232 | rownames(ALZDAT)=NULL |
233 | 233 | ||
234 | ##Is there a clean version of the GPL file available? | 234 | ##Is there a clean version of the GPL file available? |
235 | gplnum <- strsplit(genena,"[\\|/]") %>% | 235 | gplnum <- strsplit(genena,"[\\|/]") %>% |
236 | .[[1]] %>% | 236 | .[[1]] %>% |
237 | .[length(.)] %>% | 237 | .[length(.)] %>% |
238 | gsub("\\D","",.) | 238 | gsub("\\D","",.) |
239 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 239 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
240 | if(clfileex >= 1){ | 240 | if(clfileex >= 1){ |
241 | #use the clean version | 241 | #use the clean version |
242 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 242 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
243 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 243 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
244 | 244 | ||
245 | } else if(clfileex == 0){ | 245 | } else if(clfileex == 0){ |
246 | ##Lets Create a clean version | 246 | ##Lets Create a clean version |
247 | 247 | ||
248 | ##Gene ID to Gene Name | 248 | ##Gene ID to Gene Name |
249 | if(soft == TRUE){ | 249 | if(soft == TRUE){ |
250 | #Check to see if there is already a file containing information on soft files | 250 | #Check to see if there is already a file containing information on soft files |
251 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 251 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
252 | if(fileex == 1){ | 252 | if(fileex == 1){ |
253 | #Check to see if this GPL soft file has been used before | 253 | #Check to see if this GPL soft file has been used before |
254 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 254 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
255 | .$GPL_FILE_NUM%>% | 255 | .$GPL_FILE_NUM%>% |
256 | grepl(gplnum,.) %>% | 256 | grepl(gplnum,.) %>% |
257 | sum() | 257 | sum() |
258 | if(IDF == 1){ | 258 | if(IDF == 1){ |
259 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 259 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
260 | .$GPL_FILE_NUM%>% | 260 | .$GPL_FILE_NUM%>% |
261 | grep(gplnum,.) | 261 | grep(gplnum,.) |
262 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 262 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
263 | .$LOC_ID %>% | 263 | .$LOC_ID %>% |
264 | .[IDLOCAL] | 264 | .[IDLOCAL] |
265 | geneIDNam <- genena %>% | 265 | geneIDNam <- genena %>% |
266 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 266 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
267 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 267 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
268 | } else if(IDF == 0){ | 268 | } else if(IDF == 0){ |
269 | #No information on this particular GPL file | 269 | #No information on this particular GPL file |
270 | idLOCGPL <- genena %>% | 270 | idLOCGPL <- genena %>% |
271 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 271 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
272 | t(.) %>% | 272 | t(.) %>% |
273 | grep("^ID\\s*$",.) %>% | 273 | grep("^ID\\s*$",.) %>% |
274 | -1 | 274 | -1 |
275 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 275 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
276 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 276 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
277 | geneIDNam <- genena %>% | 277 | geneIDNam <- genena %>% |
278 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 278 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
279 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 279 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
280 | } | 280 | } |
281 | } else if(fileex == 0){ | 281 | } else if(fileex == 0){ |
282 | #We must create a file that we can access for later use | 282 | #We must create a file that we can access for later use |
283 | idLOCGPL <- genena %>% | 283 | idLOCGPL <- genena %>% |
284 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 284 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
285 | t(.) %>% | 285 | t(.) %>% |
286 | grep("^ID\\s*$",.) %>% | 286 | grep("^ID\\s*$",.) %>% |
287 | -1 | 287 | -1 |
288 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 288 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
289 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 289 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
290 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 290 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
291 | geneIDNam <- genena %>% | 291 | geneIDNam <- genena %>% |
292 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 292 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
293 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 293 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
294 | } | 294 | } |
295 | } else if(soft == FALSE){ | 295 | } else if(soft == FALSE){ |
296 | geneIDNam <- genena %>% | 296 | geneIDNam <- genena %>% |
297 | read_delim(delim="\t",comment = "#")%>% | 297 | read_delim(delim="\t",comment = "#")%>% |
298 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 298 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
299 | } | 299 | } |
300 | 300 | ||
301 | ##Labeling the gene IDs without names | 301 | ##Labeling the gene IDs without names |
302 | geneIDNam <- NAFIXING(geneIDNam) | 302 | geneIDNam <- NAFIXING(geneIDNam) |
303 | 303 | ||
304 | ##remove the whitespace | 304 | ##remove the whitespace |
305 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 305 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
306 | 306 | ||
307 | ##Here is the clean version | 307 | ##Here is the clean version |
308 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 308 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
309 | } | 309 | } |
310 | 310 | ||
311 | 311 | ||
312 | 312 | ||
313 | ##Changing the gene ID to gene name | 313 | ##Changing the gene ID to gene name |
314 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) | 314 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) |
315 | colnames(ALZDAT) = ALZDAT1[1,] | 315 | colnames(ALZDAT) = ALZDAT1[1,] |
316 | 316 | ||
317 | 317 | ||
318 | ##Adjusting the column names aka the gene names | 318 | ##Adjusting the column names aka the gene names |
319 | colnames(ALZDAT) <- gcnames(ALZDAT) | 319 | colnames(ALZDAT) <- gcnames(ALZDAT) |
320 | 320 | ||
321 | 321 | ||
322 | #Full RAW Data | 322 | #Full RAW Data |
323 | Fullalzdwr <- ALZDAT %>% | 323 | Fullalzdwr <- ALZDAT %>% |
324 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 324 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
325 | cbind(ALZWORDF,.) | 325 | cbind(ALZWORDF,.) |
326 | 326 | ||
327 | #Raw file is output | 327 | #Raw file is output |
328 | nfnaex <- strsplit(alz,"[\\]") %>% | 328 | nfnaex <- strsplit(alz,"[\\]") %>% |
329 | .[[1]] %>% | 329 | .[[1]] %>% |
330 | .[length(.)] %>% | 330 | .[length(.)] %>% |
331 | gsub("\\D","",.) %>% | 331 | gsub("\\D","",.) %>% |
332 | c("GSE",.,"aftexcel.txt") %>% | 332 | c("GSE",.,"aftexcel.txt") %>% |
333 | paste(collapse = "") | 333 | paste(collapse = "") |
334 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 334 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
335 | 335 | ||
336 | 336 | ||
337 | 337 | ||
338 | #Now for the discretization part | 338 | #Now for the discretization part |
339 | ##get the wordy part again | 339 | ##get the wordy part again |
340 | rawword <- t(ALZWORDF) | 340 | rawword <- t(ALZWORDF) |
341 | 341 | ||
342 | ##where is ID_REF located | 342 | ##where is ID_REF located |
343 | hereim <- grep("ID_REF",rownames(rawword)) | 343 | hereim <- grep("ID_REF",rownames(rawword)) |
344 | 344 | ||
345 | ##Subject Names GSM... | 345 | ##Subject Names GSM... |
346 | subjnam <- rawword[hereim,] | 346 | subjnam <- rawword[hereim,] |
347 | 347 | ||
348 | ##Getting the names for the rows | 348 | ##Getting the names for the rows |
349 | namedarows <- rownames(rawword)[-hereim] %>% | 349 | namedarows <- rownames(rawword)[-hereim] %>% |
350 | as.data.frame(.,stringsAsFactors = FALSE) | 350 | as.data.frame(.,stringsAsFactors = FALSE) |
351 | RAWWORD <- rawword[-hereim,] %>% | 351 | RAWWORD <- rawword[-hereim,] %>% |
352 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 352 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
353 | bind_cols(namedarows,.) | 353 | bind_cols(namedarows,.) |
354 | z <- 1 | 354 | z <- 1 |
355 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 355 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
356 | for(z in 1:dim(RAWWORD)[1]){ | 356 | for(z in 1:dim(RAWWORD)[1]){ |
357 | if(sum(is.na(RAWWORD[z,])) > 0){ | 357 | if(sum(is.na(RAWWORD[z,])) > 0){ |
358 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 358 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
359 | } | 359 | } |
360 | if(length(grep("NA",RAWWORD[z,])) > 0){ | 360 | if(length(grep("NA",RAWWORD[z,])) > 0){ |
361 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] | 361 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] |
362 | } | 362 | } |
363 | z <- z + 1 | 363 | z <- z + 1 |
364 | } | 364 | } |
365 | 365 | ||
366 | colnames(naroww) <- "ROW_NAs" | 366 | colnames(naroww) <- "ROW_NAs" |
367 | RAWWORD <- bind_cols(RAWWORD,naroww) | 367 | RAWWORD <- bind_cols(RAWWORD,naroww) |
368 | 368 | ||
369 | 369 | ||
370 | roALZna <- t(ALZDAT) %>% | 370 | roALZna <- t(ALZDAT) %>% |
371 | rownames(.) %>% | 371 | rownames(.) %>% |
372 | as.data.frame(.,stringsAsFactors = FALSE) | 372 | as.data.frame(.,stringsAsFactors = FALSE) |
373 | colnames(roALZna) <- "ID_REF" | 373 | colnames(roALZna) <- "ID_REF" |
374 | 374 | ||
375 | RAWDAT <- t(ALZDAT) %>% | 375 | RAWDAT <- t(ALZDAT) %>% |
376 | as.data.frame(.,stringsAsFactors = FALSE) | 376 | as.data.frame(.,stringsAsFactors = FALSE) |
377 | colnames(RAWDAT) <- NULL | 377 | colnames(RAWDAT) <- NULL |
378 | rownames(RAWDAT) <- NULL | 378 | rownames(RAWDAT) <- NULL |
379 | 379 | ||
380 | RAWDAT2 <- RAWDAT %>% | 380 | RAWDAT2 <- RAWDAT %>% |
381 | cbind(roALZna,.) %>% | 381 | cbind(roALZna,.) %>% |
382 | dplyr::arrange(.,ID_REF) | 382 | dplyr::arrange(.,ID_REF) |
383 | 383 | ||
384 | ##Editing the file for R processing | 384 | ##Editing the file for R processing |
385 | RAWDATID <- RAWDAT2[,1] %>% | 385 | RAWDATID <- RAWDAT2[,1] %>% |
386 | as.matrix(.) | 386 | as.matrix(.) |
387 | 387 | ||
388 | RAWDATNUM <- RAWDAT2[,-1] %>% | 388 | RAWDATNUM <- RAWDAT2[,-1] %>% |
389 | mapply(.,FUN = as.numeric) %>% | 389 | mapply(.,FUN = as.numeric) %>% |
390 | t(.) | 390 | t(.) |
391 | 391 | ||
392 | ##Consolidating genes with the same name | 392 | ##Consolidating genes with the same name |
393 | ###create empty matrix of size equal to tabRDATID | 393 | ###create empty matrix of size equal to tabRDATID |
394 | tabRDATID <- table(RAWDATID) | 394 | tabRDATID <- table(RAWDATID) |
395 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 395 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
396 | j <- 1 | 396 | j <- 1 |
397 | for(j in 1:length(tabRDATID)){ | 397 | for(j in 1:length(tabRDATID)){ |
398 | ##Putting the ones without duplicates in their new homes | 398 | ##Putting the ones without duplicates in their new homes |
399 | if(tabRDATID[j] == 1){ | 399 | if(tabRDATID[j] == 1){ |
400 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 400 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
401 | } else if(tabRDATID[j] > 1){ | 401 | } else if(tabRDATID[j] > 1){ |
402 | ##Averaging duplicates and putting them in their new homes | 402 | ##Averaging duplicates and putting them in their new homes |
403 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 403 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
404 | } | 404 | } |
405 | j <- j + 1 | 405 | j <- j + 1 |
406 | } | 406 | } |
407 | 407 | ||
408 | 408 | ||
409 | ##Outputting non Z-score Average over genes | 409 | ##Outputting non Z-score Average over genes |
410 | newoutput <-NuRDATN | 410 | newoutput <-NuRDATN |
411 | colnames(newoutput) <- rownames(tabRDATID) | 411 | colnames(newoutput) <- rownames(tabRDATID) |
412 | nfnewout <- strsplit(alz,"[\\]") %>% | 412 | nfnewout <- strsplit(alz,"[\\]") %>% |
413 | .[[1]] %>% | 413 | .[[1]] %>% |
414 | .[length(.)] %>% | 414 | .[length(.)] %>% |
415 | gsub("\\D","",.) %>% | 415 | gsub("\\D","",.) %>% |
416 | c("GSE",.,"newout.txt") %>% | 416 | c("GSE",.,"avg.txt") %>% |
417 | paste(collapse = "") | 417 | paste(collapse = "") |
418 | noutput <- newoutput %>% | 418 | noutput <- newoutput %>% |
419 | t()%>% | 419 | t()%>% |
420 | as.data.frame(.,stringsAsFactors = FALSE) | 420 | as.data.frame(.,stringsAsFactors = FALSE) |
421 | noutput <- cbind(rownames(noutput),noutput) | 421 | noutput <- cbind(rownames(noutput),noutput) |
422 | colnames(noutput) <- c("Gene Symbol",subjnam) | 422 | colnames(noutput) <- c("Gene Symbol",subjnam) |
423 | rownames(noutput) <- NULL | 423 | rownames(noutput) <- NULL |
424 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) | 424 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) |
425 | 425 | ||
426 | 426 | ||
427 | ##Scaling the Data | 427 | ##Scaling the Data |
428 | scrawdat <- NuRDATN%>% | 428 | scrawdat <- NuRDATN%>% |
429 | scale() | 429 | scale() |
430 | attr(scrawdat,"scaled:center") <- NULL | 430 | attr(scrawdat,"scaled:center") <- NULL |
431 | attr(scrawdat,"scaled:scale") <- NULL | 431 | attr(scrawdat,"scaled:scale") <- NULL |
432 | colnames(scrawdat) <- rownames(tabRDATID) | 432 | colnames(scrawdat) <- rownames(tabRDATID) |
433 | 433 | ||
434 | #Outputting the Z-score file | 434 | #Outputting the Z-score file |
435 | nfnzsc <- strsplit(alz,"[\\]") %>% | 435 | nfnzsc <- strsplit(alz,"[\\]") %>% |
436 | .[[1]] %>% | 436 | .[[1]] %>% |
437 | .[length(.)] %>% | 437 | .[length(.)] %>% |
438 | gsub("\\D","",.) %>% | 438 | gsub("\\D","",.) %>% |
439 | c("GSE",.,"avg.txt") %>% | 439 | c("GSE",.,"zscore.txt") %>% |
440 | paste(collapse = "") | 440 | paste(collapse = "") |
441 | zscraw <- scrawdat %>% | 441 | zscraw <- scrawdat %>% |
442 | t()%>% | 442 | t()%>% |
443 | as.data.frame(.,stringsAsFactors = FALSE) | 443 | as.data.frame(.,stringsAsFactors = FALSE) |
444 | zscraw <- cbind(rownames(zscraw),zscraw) | 444 | zscraw <- cbind(rownames(zscraw),zscraw) |
445 | colnames(zscraw) <- c("Gene Symbol",subjnam) | 445 | colnames(zscraw) <- c("Gene Symbol",subjnam) |
446 | rownames(zscraw) <- NULL | 446 | rownames(zscraw) <- NULL |
447 | write.table(zscraw, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) | 447 | write.table(zscraw, file = nfnzsc, sep = "\t",col.names = TRUE,row.names = FALSE) |
448 | 448 | ||
449 | 449 | ||
450 | ##Discretized the Data | 450 | ##Discretized the Data |
451 | dialzdat <- scrawdat %>% | 451 | dialzdat <- scrawdat %>% |
452 | dndat(.) %>% | 452 | dndat(.) %>% |
453 | t()%>% | 453 | t()%>% |
454 | as.data.frame(.,stringsAsFactors = FALSE) | 454 | as.data.frame(.,stringsAsFactors = FALSE) |
455 | colnames(dialzdat) <- rownames(RAWDATNUM) | 455 | colnames(dialzdat) <- rownames(RAWDATNUM) |
456 | 456 | ||
457 | ##setting "ID_REF" as a new variable | 457 | ##setting "ID_REF" as a new variable |
458 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) | 458 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) |
459 | colnames(geneNAM) <- "ID_REF" | 459 | colnames(geneNAM) <- "ID_REF" |
460 | rownames(dialzdat) <- NULL | 460 | rownames(dialzdat) <- NULL |
461 | dialzdat <-bind_cols(geneNAM,dialzdat) | 461 | dialzdat <-bind_cols(geneNAM,dialzdat) |
462 | 462 | ||
463 | ##NAs in a column | 463 | ##NAs in a column |
464 | x <- 2 | 464 | x <- 2 |
465 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 465 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
466 | nacol[1,1] = "COL_NAs" | 466 | nacol[1,1] = "COL_NAs" |
467 | for(x in 2:dim(dialzdat)[2]){ | 467 | for(x in 2:dim(dialzdat)[2]){ |
468 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 468 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
469 | x <- x + 1 | 469 | x <- x + 1 |
470 | } | 470 | } |
471 | colnames(nacol) <- colnames(dialzdat) | 471 | colnames(nacol) <- colnames(dialzdat) |
472 | dialzdat <- bind_rows(dialzdat,nacol) | 472 | dialzdat <- bind_rows(dialzdat,nacol) |
473 | 473 | ||
474 | ##NAs in a row | 474 | ##NAs in a row |
475 | y <- 1 | 475 | y <- 1 |
476 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 476 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
477 | for(y in 1:dim(dialzdat)[1]){ | 477 | for(y in 1:dim(dialzdat)[1]){ |
478 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 478 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
479 | y <- y + 1 | 479 | y <- y + 1 |
480 | } | 480 | } |
481 | colnames(narowd) <- "ROW_NAs" | 481 | colnames(narowd) <- "ROW_NAs" |
482 | dialzdat <- bind_cols(dialzdat,narowd) | 482 | dialzdat <- bind_cols(dialzdat,narowd) |
483 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 483 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
484 | colnames(RAWWORD) <- colnames(dialzdat) | 484 | colnames(RAWWORD) <- colnames(dialzdat) |
485 | ##converting to character so that the clinical can be brought together with discrete data | 485 | ##converting to character so that the clinical can be brought together with discrete data |
486 | k <- 2 | 486 | k <- 2 |
487 | for(k in 2:dim(dialzdat)[2]-1){ | 487 | for(k in 2:dim(dialzdat)[2]-1){ |
488 | dialzdat[,k] <- as.character(dialzdat[,k]) | 488 | dialzdat[,k] <- as.character(dialzdat[,k]) |
489 | k <- k + 1 | 489 | k <- k + 1 |
490 | } | 490 | } |
491 | #The End the full data | 491 | #The End the full data |
492 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 492 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
493 | 493 | ||
494 | #Produces Discrete file | 494 | #Produces Discrete file |
495 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 495 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
496 | .[[1]] %>% | 496 | .[[1]] %>% |
497 | .[length(.)] %>% | 497 | .[length(.)] %>% |
498 | gsub("\\D","",.) %>% | 498 | gsub("\\D","",.) %>% |
499 | c("GSE",.,"dscrt.txt") %>% | 499 | c("GSE",.,"dscrt.txt") %>% |
500 | paste(collapse = "") | 500 | paste(collapse = "") |
501 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 501 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
502 | n <- n +1 | 502 | n <- n +1 |
503 | } | 503 | } |
504 | } else if(numDAT == 2){ | 504 | } else if(numDAT == 2){ |
505 | #CHOOSE A DATA FILE TO CLEAN OR SEVERAL DATA FILES TO CLEAN | 505 | #CHOOSE A DATA FILE TO CLEAN OR SEVERAL DATA FILES TO CLEAN |
506 | 506 | ||
507 | #All the files you want to analyze | 507 | #All the files you want to analyze |
508 | ANDIS <- select.list(choices = list.files()[GSEfileloc],multiple = TRUE, title = "Choose the file/files you want to analyze:") | 508 | ANDIS <- select.list(choices = list.files()[GSEfileloc],multiple = TRUE, title = "Choose the file/files you want to analyze:") |
509 | if(length(ANDIS) == 0){ | 509 | if(length(ANDIS) == 0){ |
510 | #Spit out a warning | 510 | #Spit out a warning |
511 | warning("You did not select any files and so no cleaning will be performed") | 511 | warning("You did not select any files and so no cleaning will be performed") |
512 | } else{ | 512 | } else{ |
513 | #indexing the data files | 513 | #indexing the data files |
514 | n <- 1 | 514 | n <- 1 |
515 | for(n in 1: length(ANDIS)){ | 515 | for(n in 1: length(ANDIS)){ |
516 | alz <- ANDIS[n] | 516 | alz <- ANDIS[n] |
517 | 517 | ||
518 | #Working with the wordy part of the document | 518 | #Working with the wordy part of the document |
519 | alzword <- alz %>% | 519 | alzword <- alz %>% |
520 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | 520 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% |
521 | filter(grepl("!Sample",X1))%>% | 521 | filter(grepl("!Sample",X1))%>% |
522 | filter(!grepl("!Sample_contact",X1)) | 522 | filter(!grepl("!Sample_contact",X1)) |
523 | 523 | ||
524 | #Getting the GPL file | 524 | #Getting the GPL file |
525 | genena <- grep("_platform_id",alzword$X1) %>% | 525 | genena <- grep("_platform_id",alzword$X1) %>% |
526 | alzword$X2[.] %>% | 526 | alzword$X2[.] %>% |
527 | str_trim(.) %>% | 527 | str_trim(.) %>% |
528 | paste0("^",.,"\\D") %>% | 528 | paste0("^",.,"\\D") %>% |
529 | grep(.,list.files()) %>% | 529 | grep(.,list.files()) %>% |
530 | list.files()[.] | 530 | list.files()[.] |
531 | 531 | ||
532 | #Find out if it is a soft GPL file or not | 532 | #Find out if it is a soft GPL file or not |
533 | soft <- strsplit(genena,"[\\|/]") %>% | 533 | soft <- strsplit(genena,"[\\|/]") %>% |
534 | .[[1]] %>% | 534 | .[[1]] %>% |
535 | .[length(.)] %>% | 535 | .[length(.)] %>% |
536 | grepl("soft",.) | 536 | grepl("soft",.) |
537 | 537 | ||
538 | ##Changing row names and column names: | 538 | ##Changing row names and column names: |
539 | ALZWORD <- t(alzword) | 539 | ALZWORD <- t(alzword) |
540 | rownames(ALZWORD)=NULL | 540 | rownames(ALZWORD)=NULL |
541 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | 541 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) |
542 | ALZWORD <- chngrownm(ALZWORD)[-1,] | 542 | ALZWORD <- chngrownm(ALZWORD)[-1,] |
543 | ALZWORD <- ALZWORD%>% | 543 | ALZWORD <- ALZWORD%>% |
544 | as.data.frame(.,stringsAsFactors = FALSE)%>% | 544 | as.data.frame(.,stringsAsFactors = FALSE)%>% |
545 | dplyr::select(-starts_with("col")) | 545 | dplyr::select(-starts_with("col")) |
546 | 546 | ||
547 | ##Reorganizing information within the columns and final clinical data | 547 | ##Reorganizing information within the columns and final clinical data |
548 | ALZWORDF <- cinfo(ALZWORD) | 548 | ALZWORDF <- cinfo(ALZWORD) |
549 | 549 | ||
550 | 550 | ||
551 | #Working with Actual Data part of file | 551 | #Working with Actual Data part of file |
552 | alzdat <- alz %>% | 552 | alzdat <- alz %>% |
553 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | 553 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) |
554 | ALZDAT <- t(alzdat[,-1]) | 554 | ALZDAT <- t(alzdat[,-1]) |
555 | rownames(ALZDAT)=NULL | 555 | rownames(ALZDAT)=NULL |
556 | 556 | ||
557 | ##Is there a clean version of the GPL file available? | 557 | ##Is there a clean version of the GPL file available? |
558 | gplnum <- strsplit(genena,"[\\|/]") %>% | 558 | gplnum <- strsplit(genena,"[\\|/]") %>% |
559 | .[[1]] %>% | 559 | .[[1]] %>% |
560 | .[length(.)] %>% | 560 | .[length(.)] %>% |
561 | gsub("\\D","",.) | 561 | gsub("\\D","",.) |
562 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | 562 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) |
563 | if(clfileex >= 1){ | 563 | if(clfileex >= 1){ |
564 | #use the clean version | 564 | #use the clean version |
565 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | 565 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% |
566 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | 566 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") |
567 | 567 | ||
568 | } else if(clfileex == 0){ | 568 | } else if(clfileex == 0){ |
569 | ##Lets Create a clean version | 569 | ##Lets Create a clean version |
570 | 570 | ||
571 | ##Gene ID to Gene Name | 571 | ##Gene ID to Gene Name |
572 | if(soft == TRUE){ | 572 | if(soft == TRUE){ |
573 | #Check to see if there is already a file containing information on soft files | 573 | #Check to see if there is already a file containing information on soft files |
574 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | 574 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) |
575 | if(fileex == 1){ | 575 | if(fileex == 1){ |
576 | #Check to see if this GPL soft file has been used before | 576 | #Check to see if this GPL soft file has been used before |
577 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 577 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
578 | .$GPL_FILE_NUM%>% | 578 | .$GPL_FILE_NUM%>% |
579 | grepl(gplnum,.) %>% | 579 | grepl(gplnum,.) %>% |
580 | sum() | 580 | sum() |
581 | if(IDF == 1){ | 581 | if(IDF == 1){ |
582 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 582 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
583 | .$GPL_FILE_NUM%>% | 583 | .$GPL_FILE_NUM%>% |
584 | grep(gplnum,.) | 584 | grep(gplnum,.) |
585 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | 585 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% |
586 | .$LOC_ID %>% | 586 | .$LOC_ID %>% |
587 | .[IDLOCAL] | 587 | .[IDLOCAL] |
588 | geneIDNam <- genena %>% | 588 | geneIDNam <- genena %>% |
589 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | 589 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% |
590 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 590 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
591 | } else if(IDF == 0){ | 591 | } else if(IDF == 0){ |
592 | #No information on this particular GPL file | 592 | #No information on this particular GPL file |
593 | idLOCGPL <- genena %>% | 593 | idLOCGPL <- genena %>% |
594 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 594 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
595 | t(.) %>% | 595 | t(.) %>% |
596 | grep("^ID\\s*$",.) %>% | 596 | grep("^ID\\s*$",.) %>% |
597 | -1 | 597 | -1 |
598 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | 598 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% |
599 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | 599 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) |
600 | geneIDNam <- genena %>% | 600 | geneIDNam <- genena %>% |
601 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 601 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
602 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 602 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
603 | } | 603 | } |
604 | } else if(fileex == 0){ | 604 | } else if(fileex == 0){ |
605 | #We must create a file that we can access for later use | 605 | #We must create a file that we can access for later use |
606 | idLOCGPL <- genena %>% | 606 | idLOCGPL <- genena %>% |
607 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | 607 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% |
608 | t(.) %>% | 608 | t(.) %>% |
609 | grep("^ID\\s*$",.) %>% | 609 | grep("^ID\\s*$",.) %>% |
610 | -1 | 610 | -1 |
611 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | 611 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) |
612 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | 612 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") |
613 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | 613 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) |
614 | geneIDNam <- genena %>% | 614 | geneIDNam <- genena %>% |
615 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | 615 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% |
616 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 616 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
617 | } | 617 | } |
618 | } else if(soft == FALSE){ | 618 | } else if(soft == FALSE){ |
619 | geneIDNam <- genena %>% | 619 | geneIDNam <- genena %>% |
620 | read_delim(delim="\t",comment = "#")%>% | 620 | read_delim(delim="\t",comment = "#")%>% |
621 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) | 621 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$|^Gene symbol$|^GENE_SYMBOL$",colnames(.))) |
622 | } | 622 | } |
623 | 623 | ||
624 | ##Labeling the gene IDs without names | 624 | ##Labeling the gene IDs without names |
625 | geneIDNam <- NAFIXING(geneIDNam) | 625 | geneIDNam <- NAFIXING(geneIDNam) |
626 | 626 | ||
627 | ##remove the whitespace | 627 | ##remove the whitespace |
628 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | 628 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) |
629 | 629 | ||
630 | ##Here is the clean version | 630 | ##Here is the clean version |
631 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | 631 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) |
632 | } | 632 | } |
633 | 633 | ||
634 | 634 | ||
635 | 635 | ||
636 | ##Changing the gene ID to gene name | 636 | ##Changing the gene ID to gene name |
637 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) | 637 | ALZDAT1 <- cgeneID(geneIDNam,alzdat) |
638 | colnames(ALZDAT) = ALZDAT1[1,] | 638 | colnames(ALZDAT) = ALZDAT1[1,] |
639 | 639 | ||
640 | 640 | ||
641 | ##Adjusting the column names aka the gene names | 641 | ##Adjusting the column names aka the gene names |
642 | colnames(ALZDAT) <- gcnames(ALZDAT) | 642 | colnames(ALZDAT) <- gcnames(ALZDAT) |
643 | 643 | ||
644 | 644 | ||
645 | #Full RAW Data | 645 | #Full RAW Data |
646 | Fullalzdwr <- ALZDAT %>% | 646 | Fullalzdwr <- ALZDAT %>% |
647 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 647 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
648 | cbind(ALZWORDF,.) | 648 | cbind(ALZWORDF,.) |
649 | 649 | ||
650 | #Raw file is output | 650 | #Raw file is output |
651 | nfnaex <- strsplit(alz,"[\\]") %>% | 651 | nfnaex <- strsplit(alz,"[\\]") %>% |
652 | .[[1]] %>% | 652 | .[[1]] %>% |
653 | .[length(.)] %>% | 653 | .[length(.)] %>% |
654 | gsub("\\D","",.) %>% | 654 | gsub("\\D","",.) %>% |
655 | c("GSE",.,"aftexcel.txt") %>% | 655 | c("GSE",.,"aftexcel.txt") %>% |
656 | paste(collapse = "") | 656 | paste(collapse = "") |
657 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | 657 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") |
658 | 658 | ||
659 | 659 | ||
660 | 660 | ||
661 | #Now for the discretization part | 661 | #Now for the discretization part |
662 | ##get the wordy part again | 662 | ##get the wordy part again |
663 | rawword <- t(ALZWORDF) | 663 | rawword <- t(ALZWORDF) |
664 | 664 | ||
665 | ##where is ID_REF located | 665 | ##where is ID_REF located |
666 | hereim <- grep("ID_REF",rownames(rawword)) | 666 | hereim <- grep("ID_REF",rownames(rawword)) |
667 | 667 | ||
668 | ##Subject Names GSM... | 668 | ##Subject Names GSM... |
669 | subjnam <- rawword[hereim,] | 669 | subjnam <- rawword[hereim,] |
670 | 670 | ||
671 | ##Getting the names for the rows | 671 | ##Getting the names for the rows |
672 | namedarows <- rownames(rawword)[-hereim] %>% | 672 | namedarows <- rownames(rawword)[-hereim] %>% |
673 | as.data.frame(.,stringsAsFactors = FALSE) | 673 | as.data.frame(.,stringsAsFactors = FALSE) |
674 | RAWWORD <- rawword[-hereim,] %>% | 674 | RAWWORD <- rawword[-hereim,] %>% |
675 | as.data.frame(.,stringsAsFactors = FALSE) %>% | 675 | as.data.frame(.,stringsAsFactors = FALSE) %>% |
676 | bind_cols(namedarows,.) | 676 | bind_cols(namedarows,.) |
677 | z <- 1 | 677 | z <- 1 |
678 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | 678 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) |
679 | for(z in 1:dim(RAWWORD)[1]){ | 679 | for(z in 1:dim(RAWWORD)[1]){ |
680 | if(sum(is.na(RAWWORD[z,])) > 0){ | 680 | if(sum(is.na(RAWWORD[z,])) > 0){ |
681 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | 681 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) |
682 | } | 682 | } |
683 | if(length(grep("NA",RAWWORD[z,])) > 0){ | 683 | if(length(grep("NA",RAWWORD[z,])) > 0){ |
684 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] | 684 | naroww[z,1] <- as.integer(length(grep("NA",RAWWORD[z,]))) + naroww[z,1] |
685 | } | 685 | } |
686 | z <- z + 1 | 686 | z <- z + 1 |
687 | } | 687 | } |
688 | 688 | ||
689 | colnames(naroww) <- "ROW_NAs" | 689 | colnames(naroww) <- "ROW_NAs" |
690 | RAWWORD <- bind_cols(RAWWORD,naroww) | 690 | RAWWORD <- bind_cols(RAWWORD,naroww) |
691 | 691 | ||
692 | 692 | ||
693 | roALZna <- t(ALZDAT) %>% | 693 | roALZna <- t(ALZDAT) %>% |
694 | rownames(.) %>% | 694 | rownames(.) %>% |
695 | as.data.frame(.,stringsAsFactors = FALSE) | 695 | as.data.frame(.,stringsAsFactors = FALSE) |
696 | colnames(roALZna) <- "ID_REF" | 696 | colnames(roALZna) <- "ID_REF" |
697 | 697 | ||
698 | RAWDAT <- t(ALZDAT) %>% | 698 | RAWDAT <- t(ALZDAT) %>% |
699 | as.data.frame(.,stringsAsFactors = FALSE) | 699 | as.data.frame(.,stringsAsFactors = FALSE) |
700 | colnames(RAWDAT) <- NULL | 700 | colnames(RAWDAT) <- NULL |
701 | rownames(RAWDAT) <- NULL | 701 | rownames(RAWDAT) <- NULL |
702 | 702 | ||
703 | RAWDAT2 <- RAWDAT %>% | 703 | RAWDAT2 <- RAWDAT %>% |
704 | cbind(roALZna,.) %>% | 704 | cbind(roALZna,.) %>% |
705 | dplyr::arrange(.,ID_REF) | 705 | dplyr::arrange(.,ID_REF) |
706 | 706 | ||
707 | ##Editing the file for R processing | 707 | ##Editing the file for R processing |
708 | RAWDATID <- RAWDAT2[,1] %>% | 708 | RAWDATID <- RAWDAT2[,1] %>% |
709 | as.matrix(.) | 709 | as.matrix(.) |
710 | 710 | ||
711 | RAWDATNUM <- RAWDAT2[,-1] %>% | 711 | RAWDATNUM <- RAWDAT2[,-1] %>% |
712 | mapply(.,FUN = as.numeric) %>% | 712 | mapply(.,FUN = as.numeric) %>% |
713 | t(.) | 713 | t(.) |
714 | 714 | ||
715 | ##Consolidating genes with the same name | 715 | ##Consolidating genes with the same name |
716 | ###create empty matrix of size equal to tabRDATID | 716 | ###create empty matrix of size equal to tabRDATID |
717 | tabRDATID <- table(RAWDATID) | 717 | tabRDATID <- table(RAWDATID) |
718 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | 718 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) |
719 | j <- 1 | 719 | j <- 1 |
720 | for(j in 1:length(tabRDATID)){ | 720 | for(j in 1:length(tabRDATID)){ |
721 | ##Putting the ones without duplicates in their new homes | 721 | ##Putting the ones without duplicates in their new homes |
722 | if(tabRDATID[j] == 1){ | 722 | if(tabRDATID[j] == 1){ |
723 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | 723 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] |
724 | } else if(tabRDATID[j] > 1){ | 724 | } else if(tabRDATID[j] > 1){ |
725 | ##Averaging duplicates and putting them in their new homes | 725 | ##Averaging duplicates and putting them in their new homes |
726 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | 726 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) |
727 | } | 727 | } |
728 | j <- j + 1 | 728 | j <- j + 1 |
729 | } | 729 | } |
730 | 730 | ||
731 | ##Outputting non Z-score Average over genes | 731 | ##Outputting non Z-score Average over genes |
732 | newoutput <-NuRDATN | 732 | newoutput <-NuRDATN |
733 | colnames(newoutput) <- rownames(tabRDATID) | 733 | colnames(newoutput) <- rownames(tabRDATID) |
734 | nfnewout <- strsplit(alz,"[\\]") %>% | 734 | nfnewout <- strsplit(alz,"[\\]") %>% |
735 | .[[1]] %>% | 735 | .[[1]] %>% |
736 | .[length(.)] %>% | 736 | .[length(.)] %>% |
737 | gsub("\\D","",.) %>% | 737 | gsub("\\D","",.) %>% |
738 | c("GSE",.,"avg.txt") %>% | 738 | c("GSE",.,"avg.txt") %>% |
739 | paste(collapse = "") | 739 | paste(collapse = "") |
740 | noutput <- newoutput %>% | 740 | noutput <- newoutput %>% |
741 | t()%>% | 741 | t()%>% |
742 | as.data.frame(.,stringsAsFactors = FALSE) | 742 | as.data.frame(.,stringsAsFactors = FALSE) |
743 | noutput <- cbind(rownames(noutput),noutput) | 743 | noutput <- cbind(rownames(noutput),noutput) |
744 | colnames(noutput) <- c("Gene Symbol",subjnam) | 744 | colnames(noutput) <- c("Gene Symbol",subjnam) |
745 | rownames(noutput) <- NULL | 745 | rownames(noutput) <- NULL |
746 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) | 746 | write.table(noutput, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) |
747 | 747 | ||
748 | 748 | ||
749 | ##Scaling the Data | 749 | ##Scaling the Data |
750 | scrawdat <- NuRDATN%>% | 750 | scrawdat <- NuRDATN%>% |
751 | scale() | 751 | scale() |
752 | attr(scrawdat,"scaled:center") <- NULL | 752 | attr(scrawdat,"scaled:center") <- NULL |
753 | attr(scrawdat,"scaled:scale") <- NULL | 753 | attr(scrawdat,"scaled:scale") <- NULL |
754 | colnames(scrawdat) <- rownames(tabRDATID) | 754 | colnames(scrawdat) <- rownames(tabRDATID) |
755 | 755 | ||
756 | #Outputting the Z-score file | 756 | #Outputting the Z-score file |
757 | nfnzsc <- strsplit(alz,"[\\]") %>% | 757 | nfnzsc <- strsplit(alz,"[\\]") %>% |
758 | .[[1]] %>% | 758 | .[[1]] %>% |
759 | .[length(.)] %>% | 759 | .[length(.)] %>% |
760 | gsub("\\D","",.) %>% | 760 | gsub("\\D","",.) %>% |
761 | c("GSE",.,"zscore.txt") %>% | 761 | c("GSE",.,"zscore.txt") %>% |
762 | paste(collapse = "") | 762 | paste(collapse = "") |
763 | zscraw <- scrawdat %>% | 763 | zscraw <- scrawdat %>% |
764 | t()%>% | 764 | t()%>% |
765 | as.data.frame(.,stringsAsFactors = FALSE) | 765 | as.data.frame(.,stringsAsFactors = FALSE) |
766 | zscraw <- cbind(rownames(zscraw),zscraw) | 766 | zscraw <- cbind(rownames(zscraw),zscraw) |
767 | colnames(zscraw) <- c("Gene Symbol",subjnam) | 767 | colnames(zscraw) <- c("Gene Symbol",subjnam) |
768 | rownames(zscraw) <- NULL | 768 | rownames(zscraw) <- NULL |
769 | write.table(zscraw, file = nfnewout, sep = "\t",col.names = TRUE,row.names = FALSE) | 769 | write.table(zscraw, file = nfnzsc, sep = "\t",col.names = TRUE,row.names = FALSE) |
770 | 770 | ||
771 | ##Discretized the Data | 771 | ##Discretized the Data |
772 | dialzdat <- scrawdat %>% | 772 | dialzdat <- scrawdat %>% |
773 | dndat(.) %>% | 773 | dndat(.) %>% |
774 | t()%>% | 774 | t()%>% |
775 | as.data.frame(.,stringsAsFactors = FALSE) | 775 | as.data.frame(.,stringsAsFactors = FALSE) |
776 | colnames(dialzdat) <- rownames(RAWDATNUM) | 776 | colnames(dialzdat) <- rownames(RAWDATNUM) |
777 | 777 | ||
778 | ##setting "ID_REF" as a new variable | 778 | ##setting "ID_REF" as a new variable |
779 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) | 779 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1),stringsAsFactors = FALSE) |
780 | colnames(geneNAM) <- "ID_REF" | 780 | colnames(geneNAM) <- "ID_REF" |
781 | rownames(dialzdat) <- NULL | 781 | rownames(dialzdat) <- NULL |
782 | dialzdat <-bind_cols(geneNAM,dialzdat) | 782 | dialzdat <-bind_cols(geneNAM,dialzdat) |
783 | 783 | ||
784 | ##NAs in a column | 784 | ##NAs in a column |
785 | x <- 2 | 785 | x <- 2 |
786 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | 786 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) |
787 | nacol[1,1] = "COL_NAs" | 787 | nacol[1,1] = "COL_NAs" |
788 | for(x in 2:dim(dialzdat)[2]){ | 788 | for(x in 2:dim(dialzdat)[2]){ |
789 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | 789 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) |
790 | x <- x + 1 | 790 | x <- x + 1 |
791 | } | 791 | } |
792 | colnames(nacol) <- colnames(dialzdat) | 792 | colnames(nacol) <- colnames(dialzdat) |
793 | dialzdat <- bind_rows(dialzdat,nacol) | 793 | dialzdat <- bind_rows(dialzdat,nacol) |
794 | 794 | ||
795 | ##NAs in a row | 795 | ##NAs in a row |
796 | y <- 1 | 796 | y <- 1 |
797 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | 797 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) |
798 | for(y in 1:dim(dialzdat)[1]){ | 798 | for(y in 1:dim(dialzdat)[1]){ |
799 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | 799 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) |
800 | y <- y + 1 | 800 | y <- y + 1 |
801 | } | 801 | } |
802 | colnames(narowd) <- "ROW_NAs" | 802 | colnames(narowd) <- "ROW_NAs" |
803 | dialzdat <- bind_cols(dialzdat,narowd) | 803 | dialzdat <- bind_cols(dialzdat,narowd) |
804 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | 804 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam |
805 | colnames(RAWWORD) <- colnames(dialzdat) | 805 | colnames(RAWWORD) <- colnames(dialzdat) |
806 | ##converting to character so that the clinical can be brought together with discrete data | 806 | ##converting to character so that the clinical can be brought together with discrete data |
807 | k <- 2 | 807 | k <- 2 |
808 | for(k in 2:dim(dialzdat)[2]-1){ | 808 | for(k in 2:dim(dialzdat)[2]-1){ |
809 | dialzdat[,k] <- as.character(dialzdat[,k]) | 809 | dialzdat[,k] <- as.character(dialzdat[,k]) |
810 | k <- k + 1 | 810 | k <- k + 1 |
811 | } | 811 | } |
812 | #The End the full data | 812 | #The End the full data |
813 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | 813 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) |
814 | 814 | ||
815 | #Produces Discrete file | 815 | #Produces Discrete file |
816 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% | 816 | nfnaex2 <- strsplit(alz,"[\\|/]") %>% |
817 | .[[1]] %>% | 817 | .[[1]] %>% |
818 | .[length(.)] %>% | 818 | .[length(.)] %>% |
819 | gsub("\\D","",.) %>% | 819 | gsub("\\D","",.) %>% |
820 | c("GSE",.,"dscrt.txt") %>% | 820 | c("GSE",.,"dscrt.txt") %>% |
821 | paste(collapse = "") | 821 | paste(collapse = "") |
822 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) | 822 | write.table(Dscrtalzdw, file = nfnaex2, sep = "\t",col.names = TRUE,row.names = FALSE) |
823 | 823 | ||
824 | 824 | ||
825 | n <- n + 1 | 825 | n <- n + 1 |
826 | } | 826 | } |
827 | } | 827 | } |
828 | } | 828 | } |
829 | } | 829 | } |
830 | #The Rest of this code will be used every time you want to change a data set | 830 | #The Rest of this code will be used every time you want to change a data set |
831 | THEFT() | 831 | THEFT() |