data_cleaning.R 11.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
#download the file to load
if (!file.exists("data")){dir.create("data")}
fileUrl <- "https://data.baltimorecity.gov/api/views/dz54-2aru/rows.csv?accessType=DOWNLOAD"
download.file(fileUrl, destfile = "./data/cameras.csv",method = "curl")
dateDownloaded <- date()
if (!file.exists("data")){dir.create("data")}
fileUrl <- "https://data.baltimorecity.gov/api/views/dz54-2aru/rows.csv?accessType=DOWNLOAD"
download.file(fileUrl, destfile = "./data/cameras.csv",method = "curl")
dateDownloaded <- date()

dataset <- read.csv("./data/cameras.csv")
#equal to
dataset <- read.table("./data/cameras.csv",sep=",",header = TRUE)


if (!file.exists("data")){dir.create("data")}
fileUrl <- "https://data.baltimorecity.gov/api/views/dz54-2aru/rows.xlsx?accessType=DOWNLOAD"
download.file(fileUrl, destfile = "./data/cameras.xlsx",method = "curl")
dateDownloaded <- date()

#read xlsx file
library(gdata)
dataset <- read.csv("./data/cameras.xlsx")

#data table
library(data.table)
DF <- data.frame(x=rnorm(9),y=rep(c("a","b","c"),each=3),z=rnorm(9))
DT <- data.table(x=rnorm(9),y=rep(c("a","b","c"),each=3),z=rnorm(9))
#subsetting rows
DT[2,]
DT[DT$y == 'a']
DT[c(2,3)]
#subsetting columns
DT[,list(x)]
#calculating values for variables
DT[,list(mean(x),sum(z))]
DT[,table(y)]
#adding new columns
DT[,w:=z^2]
DT2 <- DT
DT[,y:=2] #DT, DT2 the same
#multiple operations
DT[,m:={tmp<-(x+z);log2(tmp+5)}]
DT[,a:=x>0]
DT[,b:=mean(x+w),by=a]
#special variables
set.seed(123)
DT <- data.table(x=sample(letters[1:3],1E5,TRUE))
#keys
DT <- data.table(x=rep(c("a","b","c"),each=100),y=rnorm(300))
setkey(DT,x)
DT['a']
#joins
DT1 <- data.table(x=c('a','a','b','dt1'),y=1:4)
DT2 <- data.table(x=c('a','b','dt2'),z=5:7)
setkey(DT1,x); setkey(DT2,x)
merge(DT1, DT2)


#read XML into R
library(XML)
fileUrl <- "http://www.w3schools.com/xml/simple.xml"
doc <- xmlTreeParse(fileUrl, useInternal = TRUE)
rootNode <- xmlRoot(doc)
xmlName(rootNode)
names(rootNode)
#directly access parts of XML doc
rootNode[[1]]
rootNode[[1]][[1]]
#programmatically extract parts of the file
xmlSApply(rootNode,xmlValue)
xpathSApply(rootNode, "//name",xmlValue)
xpathSApply(rootNode, "//price",xmlValue)
#another example
fileUrl <- "http://espn.com/nfl/team/_/name/baltimore-ravens"
doc <- htmlTreeParse(fileUrl, useInternal = TRUE)
scores <- xpathSApply(doc,"li[@class='score']",xmlValue)
teams <- xpathSApply(doc,"li[@class='team-name']",xmlValue)

#Making a Proportional Stacked Bar Graph

#reading JSON
#javascript object notation
library(jsonlite)
jsonData <- fromJSON("https://api.github.com/users/jtleek/repos")
names(jsonData)
names(jsonData$owner)
jsonData$owner$login
#writing data frame to JSON
myjson <- toJSON(iris, pretty = TRUE)
cat(myjson)
#convert back to JSON
iris2 <- fromJSON(myjson)


#reading mySQL
library(RMySQL)
ucscDb <- dbConnect(MySQL(),user="genome",
                    host="genome-mysql.cse.ucsc.edu")
result <- dbGetQuery(ucscDb,"show databases;");dbDisconnect(ucscDb)

hg19 <- dbConnect(MySQL(),user="genome",db='hg19',
                  host="genome-mysql.cse.ucsc.edu")
allTables <- dbListTables(hg19)
length(allTables)
#get dimensions of a specific table
dbListFields(hg19,"affyU133Plus2")
dbGetQuery(hg19,"select count(*) from affyU133Plus2")
result <- dbGetQuery(hg19,"select * from affyU133Plus2")
#read from the table
affyData <- dbReadTable(hg19,"affyU133Plus2")
#query
affyMis <- dbGetQuery(hg19, "select * from affyU133Plus2 where misMatches between 1 and 3")
#equal to 
query <- dbSendQuery(hg19, "select * from affyU133Plus2 where misMatches between 1 and 3")
affyMis <- fetch(query)
quantile(affyMis$misMatches)
dbClearResult(query)
#disconnect mySQL
dbDisconnect(hg19)


#reading HDF5
source("http://bioconductor.org/biocLite.R")
biocLite("rhdf5")
library(rhdf5)
created <- h5createFile("example.h5")
created <- h5createGroup("example.h5","foo")
created <- h5createGroup("example.h5","baa")
created <- h5createGroup("example.h5","foo/foobaa")
h5ls("example.h5")
#write to groups
A <- matrix(1:10, nr=5, nc =2)
h5write(A, "example.h5","foo/A")
B <- array(seq(0.1,2.0,by=0.1),dim=c(5,2,2))
attr(B,"scale") <- "liter"
h5write(B,"example.h5","foo/foobaa/B")
h5ls("example.h5")
#write a data set
df <- data.frame(1L:5L, seq(0,1,length.out = 5), c('ab','cde','fghi','a','s'),
                 stringsAsFactors = F)
h5write(df,"example.h5","df")
h5ls("example.h5")
#reading data
readA <- h5read("example.h5","foo/A")
readB <- h5read("example.h5","foo/foobaa/B")
readdf <- h5read("example.h5",'df')
readA


#reading data from APIs

#subsetting
set.seed(13435)
X <- data.frame("var1"=sample(1:5),"var2"=sample(6:10),"var3"=sample(11:15))
X <- X[sample(1:5),]
X$var2[c(1,3)] <- NA
#dealing with missing values
X[which(X$var2>8),] #which can ignore the NA values
#sorting川普
sort(X$var1)
sort(X$var1,decreasing = TRUE)
sort(X$var2,na.last = TRUE)
#ordering
X[order(X$var1),]
#ording by plyr
library(plyr)
arrange(X,var1)
arrange(X,desc(var1))


#creating new variables
#getting the data from the web
if (!file.exists("data")){dir.create("data")}
fileUrl <- "https://data.baltimorecity.gov/api/views/k5ry-ef3g/rows.csv?accessType=DOWNLOAD"
download.file(fileUrl, destfile = "./data/restaurants.csv",method = "curl")
dateDownloaded <- date()
restData <- read.csv("./data/restaurants.csv")

#subsetting variables
restData$nearMe <- restData$neighborhood %in% c("Roland Park","Homeland")
table(restData$nearMe)
#creating binary variables
restData$zipWrong <- ifelse(restData$zipCode < 0, TRUE, FALSE)
with(restData,table(zipWrong,zipCode < 0))
#creating categorical variable
restData$zipGroup <- cut(restData$zipCode, breaks = quantile(restData$zipCode))
table(restData$zipGroup)
#easier cutting
library(Hmisc)
restData$zipGroup <- cut2(restData$zipCode,g=4)
table(restData$zipGroup)
#creating factor variables
restData$zcf <- factor(restData$zipCode)
#levels of factor
yesno <- sample(c("yes","no"),size = 10,replace = TRUE)
yesnofac <- factor(yesno,levels = c("yes","no"))
relevel(yesnofac,ref = "no")
#cutting produces factor variables
library(Hmisc)
restData$zipGroup <- cut2(restData$zipCode,g=4)
#using mutate function
library(Hmisc)
library(plyr)
restData2 <- mutate(restData,zipGroup=cut2(zipCode,g=4))
table(restData2$zipGroup)

#smmarizing data
colSums(is.na(restData))
all(colSums(is.na(restData)) == 0)
#values with specific character
table(restData$zipCode %in% c("21212","21213"))
#cross table
data("UCBAdmissions")
df1 <- as.data.frame(UCBAdmissions)
summary(df1)
xt <- xtabs(Freq ~Gender +Admit,data=df1) #sum
#flat tables
warpbreaks$replicate <- rep(1:9, len=54)
xt <- xtabs(breaks~.,data=warpbreaks)
ftable(xt)
#size of a data set
fakeData <- rnorm(1e5)
object.size(fakeData)
print(object.size(fakeData),units = "Mb")


#dplyr package
library(dplyr)
#select
chicago <- readRDS("./data/chicago.rds")
head(select(chicago, 1:5)) #select col
head(select(chicago, city:dptp))
head(select(chicago,-(city:dptp))) #not select
#equivalent
i <- match("city", names(chicago))
j <- match("dptp", names(chicago))
head(chicago[,-(i:j)])

#filter
chic <- filter(chicago, pm25tmean2 > 30)
head(select(chic,1:3,pm25tmean2))
chic <- filter(chicago, pm25tmean2 > 30 & tmpd > 80)
head(select(chic,1:3,pm25tmean2,tmpd))

#arrange (reorder rows while preserving corresponding order of other col)
chicago <- arrange(chicago, date)
head(select(chicago,date,pm25tmean2))
#descending order
chicago <- arrange(chicago, desc(date))
head(select(chicago,date,pm25tmean2))


#rename
chicago <- rename(chicago, dewpoint = dptp, pm25 = pm25tmean2)
head(select(chicago,1:5))

#mutate
chicago <- mutate(chicago,
                  pm25detrend = pm25 - mean(pm25,na.rm = TRUE))
head(select(chicago,pm25,pm25detrend))

#group_by (generate summary statistics by stratum)
chicago <- mutate(chicago,
                  tempcat=factor(1*(tmpd>80), labels = c("cold","hot")))
#1* just transfor to numeric (0,1)
hotcold <- group_by(chicago, tempcat)
summarize(hotcold, pm25 = mean(pm25, na.rm = TRUE),
          o3 = max(o3tmean2, na.rm = TRUE),
          no2 = median(no2tmean2, na.rm = TRUE))

chicago <- mutate(chicago, 
                  year = as.POSIXlt(date)$year + 1900)
years <- group_by(chicago, year)
summarize(years, pm25 = mean(pm25, na.rm = T),
          o3 = max(o3tmean2, na.rm = T),
          no2 = median(no2tmean2, na.rm = T))

chicago %>% mutate(month = as.POSIXlt(date)$mon +1) %>% group_by(month) %>% summarize(pm25 = mean(pm25, na.rm = T),
                o3 = max(o3tmean2, na.rm = T),
                no2 = median(no2tmean2, na.rm = T))


if (!exists("./data")) {dir.create("./data")}
fileUrl1 <- "https://dl.dropboxusercontent.com/u/7710864/data/reviews-apr29.csv"
fileUrl2 <- "https://dl.dropboxusercontent.com/u/7710864/data/solutions-apr29.csv"

download.file(fileUrl1,destfile = "./data/reviews.csv",method = "curl")
download.file(fileUrl2,destfile = "./data/solutions.csv",method = "curl")

reviews <- read.csv("./data/reviews.csv")
solutions <- read.csv("./data/solutions.csv")

#merge data
mergedData <- merge(reviews, solutions, by.x = "solution_id", by.y="id",all=TRUE)

#join in the plyr package
library(plyr)
df1 <- data.frame(id = sample(1:10), x=rnorm(10))
df2 <- data.frame(id = sample(1:10), y = rnorm(10))
arrange(join(df1, df2),id)
#join multiple data frames
df1 <- data.frame(id = sample(1:10), x=rnorm(10))
df2 <- data.frame(id = sample(1:10), y = rnorm(10))
df3 <- data.frame(id = sample(1:10),z=rnorm(10))

dfList <- list(df1,df2,df3)
join_all(dfList)

#working with date
d1 <- date()
class(d1) #charactor

d2 <- Sys.Date()
class(d2) #date
#formatting dates
format(d2, "%a %b %d")

x <- c("1jan1960","2jan1960")
z <- as.Date(x, "%d%b%Y")
#converting
weekdays(d2)

#lubridate
library(lubridate)
ymd("20140108")
ymd("2011-08-03")

#editing text variables

if (!file.exists("data")){dir.create("data")}
fileUrl <- "https://data.baltimorecity.gov/api/views/dz54-2aru/rows.csv?accessType=DOWNLOAD"
download.file(fileUrl, destfile = "./data/cameras.csv",method = "curl")

camera <- read.csv("./data/cameras.csv")
tolower(names(camera))

#fixing character vectors
splitNames <- strsplit(names(camera), "\\.")
splitNames[[6]][1]
firstElement <- function(x){x[1]}
sapply(splitNames,firstElement)

fileUrl1 <- "https://dl.dropboxusercontent.com/u/7710864/data/reviews-apr29.csv"
fileUrl2 <- "https://dl.dropboxusercontent.com/u/7710864/data/solutions-apr29.csv"

download.file(fileUrl1,destfile = "./data/reviews.csv",method = "curl")
download.file(fileUrl2,destfile = "./data/solutions.csv",method = "curl")

reviews <- read.csv("./data/reviews.csv")
solutions <- read.csv("./data/solutions.csv")
names(reviews)
#replacement
sub("_", "", names(reviews)) #just replace one
gsub() #replace all


#finding values
grep("Alameda", camera$intersection) #return location
grepl() #return T or F

grep("Alameda", camera$intersection, value = TRUE) #return exact element 


#stringr library
library(stringr)
nchar("Jeffrey Leek") #count
substr("Jeffrey Leek",1,7)
paste("Jeffrey","Leek") #with blank
paste0("Jeffrey", "Leek") #without blank
str_trim("Jeff    ") #remove the blanks (beginning and ending)


#reshaping
library(reshape2)
mtcars$carname <- rownames(mtcars)
carMelt <- melt(mtcars, id=c("carname","gear","cyl"), measure.vars = c("mpg","hp"))


#casting data frames
cylData <- dcast(carMelt,cyl~variable) #count
cylData <- dcast(carMelt,cyl~variable, mean)

#averaging values
head(InsectSprays)
tapply(InsectSprays$count,InsectSprays$spray,sum) #
#split
spIns <- split(InsectSprays$count, InsectSprays$spray)
sapply(spIns,sum)
#or 
unlist(lapply(spIns,sum))

#plyr package
library(plyr)
ddply(InsectSprays, "spray",summarize,sum=sum(count)) #return dataframe