Commit 0eb3420561162679cbaa6e877e4bb7621c5d694b
1 parent
2167ed7633
Exists in
master
This code combines the cleaning and discretizing processes. (UNTESTED)
Two files are output one with raw data and the other with discretized data.
Showing
1 changed file
with
445 additions
and
0 deletions
Show diff stats
RCleanDscret.R
| File was created | 1 | #Libraries required to run the code | |
| 2 | library(pryr) | ||
| 3 | library(MASS) | ||
| 4 | library(dplyr) | ||
| 5 | library(tidyr) | ||
| 6 | library(readr) | ||
| 7 | library(stringr) | ||
| 8 | |||
| 9 | |||
| 10 | #Necessary Functions | ||
| 11 | #1#Function for handling the changing of row names and column names | ||
| 12 | chngrownm <- function(mat){ | ||
| 13 | row <- dim(mat)[1] | ||
| 14 | col <- dim(mat)[2] | ||
| 15 | j <- 1 | ||
| 16 | x <- 1 | ||
| 17 | p <- 1 | ||
| 18 | a <- 1 | ||
| 19 | b <- 1 | ||
| 20 | g <- 1 | ||
| 21 | for(j in 1:col){ | ||
| 22 | if("!Sample_source_name_ch1"==mat[1,j]){ | ||
| 23 | colnames(mat)[j] <- "Brain_Region" | ||
| 24 | } | ||
| 25 | if("!Sample_title" == mat[1,j]){ | ||
| 26 | colnames(mat)[j] <- "Title" | ||
| 27 | } | ||
| 28 | if("!Sample_geo_accession" == mat[1,j]){ | ||
| 29 | colnames(mat)[j] <- "ID_REF" | ||
| 30 | } else{ | ||
| 31 | if(grepl("Sex|gender|Gender|sex",mat[2,j])==TRUE){ | ||
| 32 | colnames(mat)[j] <- paste0("Sex",x) | ||
| 33 | x = x + 1 | ||
| 34 | } | ||
| 35 | if(grepl("postmorteminterval|PMI|pmi",mat[2,j])==TRUE){ | ||
| 36 | colnames(mat)[j] <- paste0("PMI",p) | ||
| 37 | p = p + 1 | ||
| 38 | } | ||
| 39 | if(grepl("age|Age|AGE",mat[2,j])==TRUE){ | ||
| 40 | colnames(mat)[j] <- paste0("Age",a) | ||
| 41 | a = a + 1 | ||
| 42 | } | ||
| 43 | if(grepl("braak|b&b",mat[2,j])==TRUE){ | ||
| 44 | colnames(mat)[j] <- paste0("Braak",b) | ||
| 45 | b = b + 1 | ||
| 46 | } | ||
| 47 | if(grepl("group|disease|control|AD|normal|diagnosis|Alzheimer|Control",mat[2,j])==TRUE){ | ||
| 48 | colnames(mat)[j] <- paste0("Group",g) | ||
| 49 | g = g + 1 | ||
| 50 | } | ||
| 51 | |||
| 52 | } | ||
| 53 | j = j + 1 | ||
| 54 | } | ||
| 55 | mat | ||
| 56 | } | ||
| 57 | |||
| 58 | #2#Function for reorganizing information within the columns | ||
| 59 | cinfo <- function(mat){ | ||
| 60 | col <- dim(mat)[2] | ||
| 61 | j <-2 | ||
| 62 | for(j in 2:col){ | ||
| 63 | if(grepl("Group",colnames(mat)[j]) == TRUE){ | ||
| 64 | mat[,j] <- gsub(".+:\\s|\\s.+;.+","",mat[,j]) | ||
| 65 | } | ||
| 66 | if(grepl("Age",colnames(mat)[j])==TRUE){ | ||
| 67 | mat[,j] <- gsub("\\D","",mat[,j])%>% | ||
| 68 | as.integer() | ||
| 69 | } | ||
| 70 | if(grepl("Sex",colnames(mat)[j])==TRUE){ | ||
| 71 | mat[,j] <- gsub(".+:\\s","",mat[,j]) | ||
| 72 | } | ||
| 73 | if(grepl("PMI",colnames(mat)[j])==TRUE){ | ||
| 74 | mat[,j] <- gsub("[^0-9\\.]","",mat[,j])%>% | ||
| 75 | as.numeric() | ||
| 76 | } | ||
| 77 | if(grepl("Braak",colnames(mat)[j])==TRUE){ | ||
| 78 | mat[,j]<-gsub(".+:\\s","",mat[,j])%>% | ||
| 79 | as.roman()%>% | ||
| 80 | as.integer() | ||
| 81 | } | ||
| 82 | j=j+1 | ||
| 83 | } | ||
| 84 | mat | ||
| 85 | } | ||
| 86 | |||
| 87 | #3#Function for labeling the gene IDs without names | ||
| 88 | NAFIXING <- function(GIDNAM){ | ||
| 89 | row <- dim(GIDNAM)[1] | ||
| 90 | i <- 1 | ||
| 91 | for(i in 1:row){ | ||
| 92 | if(grepl("^NA\\s*$",GIDNAM[i,2])==TRUE||is.na(GIDNAM[i,2])==TRUE){ | ||
| 93 | GIDNAM[i,2] <- GIDNAM[i,1] | ||
| 94 | } | ||
| 95 | i <- i + 1 | ||
| 96 | } | ||
| 97 | GIDNAM | ||
| 98 | } | ||
| 99 | |||
| 100 | #4#Function for changing the gene ID to gene name | ||
| 101 | cgeneID <- function(GeneName,DATA){ | ||
| 102 | colGene <- dim(GeneName)[2] | ||
| 103 | j <- 1 | ||
| 104 | for(j in 1:colGene){ | ||
| 105 | chngsreq <- grep(paste0("^",GeneName[1,j],"$"),DATA[1,]) | ||
| 106 | if(is.na(sum(chngsreq))==FALSE){ | ||
| 107 | if(sum(chngsreq) > 0){ | ||
| 108 | DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) | ||
| 109 | } | ||
| 110 | } | ||
| 111 | #if(sum(chngsreq) > 0){ | ||
| 112 | ##DATA[1,chngsreq] <- gsub(GeneName[1,j],GeneName[2,j],DATA[1,chngsreq]) | ||
| 113 | #DATA[1,chngsreq] <- gsub(paste0("^",GeneName[1,j]),GeneName[2,j],DATA[1,chngsreq]) | ||
| 114 | #} | ||
| 115 | j = j+1 | ||
| 116 | } | ||
| 117 | DATA | ||
| 118 | } | ||
| 119 | |||
| 120 | #5#Function for adjusting the gene names | ||
| 121 | gcnames <- function(DiData,usecol=1){ | ||
| 122 | nuruns <- dim(DiData)[2] | ||
| 123 | i = 1 | ||
| 124 | nwnam <- rep("0",length.out=nuruns) | ||
| 125 | for(i in 1:nuruns){ | ||
| 126 | if(length(strsplit(colnames(DiData)[i],"///")[[1]]) >= usecol){ | ||
| 127 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][usecol]) | ||
| 128 | } else{ | ||
| 129 | nwnam[i]=str_trim(strsplit(colnames(DiData)[i],"///")[[1]][1]) | ||
| 130 | } | ||
| 131 | |||
| 132 | } | ||
| 133 | nwnam | ||
| 134 | |||
| 135 | } | ||
| 136 | |||
| 137 | #6# Function for discretizing the data | ||
| 138 | dndat <- function(NDATA){ | ||
| 139 | rownd <- dim(NDATA)[1] | ||
| 140 | colnd <- dim(NDATA)[2] | ||
| 141 | DDATA <- matrix(0,nrow=rownd,ncol=colnd) | ||
| 142 | colnames(DDATA) <- colnames(NDATA) | ||
| 143 | i <- 1 | ||
| 144 | for(i in 1:rownd){ | ||
| 145 | j <- 1 | ||
| 146 | for(j in 1:colnd){ | ||
| 147 | if(is.na(NDATA[i,j])==FALSE){ | ||
| 148 | |||
| 149 | if(NDATA[i,j] < -1){ | ||
| 150 | DDATA[i,j]=0L | ||
| 151 | } | ||
| 152 | if(NDATA[i,j] > 1){ | ||
| 153 | DDATA[i,j]=2L | ||
| 154 | } | ||
| 155 | if(-1 <= NDATA[i,j] && NDATA[i,j] < 1){ | ||
| 156 | DDATA[i,j]=1L | ||
| 157 | } | ||
| 158 | } else{ | ||
| 159 | DDATA[i,j] = NDATA[i,j] | ||
| 160 | } | ||
| 161 | j = j + 1 | ||
| 162 | } | ||
| 163 | i = i + 1 | ||
| 164 | } | ||
| 165 | DDATA | ||
| 166 | } | ||
| 167 | |||
| 168 | |||
| 169 | #The Rest of this code will be used every time you want to change a data set | ||
| 170 | |||
| 171 | #Getting the series matrix file | ||
| 172 | print("Choose the series matrix file that you want to Analyze") | ||
| 173 | alz <- file.choose() | ||
| 174 | |||
| 175 | #Getting the GPL file | ||
| 176 | print("Choose the GPL file that correlates with the above series matrix file") | ||
| 177 | genena <- file.choose() | ||
| 178 | |||
| 179 | |||
| 180 | #Find out if it is a soft GPL file or not | ||
| 181 | soft <- strsplit(genena,"[\\|/]") %>% | ||
| 182 | .[[1]] %>% | ||
| 183 | .[length(.)] %>% | ||
| 184 | grepl("soft|annot",.) | ||
| 185 | |||
| 186 | #Working with the wordy part of the document | ||
| 187 | alzword <- alz %>% | ||
| 188 | read_delim(delim ="\t",comment = "!Series",col_names = FALSE)%>% | ||
| 189 | filter(grepl("!Sample",X1))%>% | ||
| 190 | filter(!grepl("!Sample_contact",X1)) | ||
| 191 | |||
| 192 | ##Changing row names and column names: | ||
| 193 | ALZWORD <- t(alzword) | ||
| 194 | rownames(ALZWORD)=NULL | ||
| 195 | colnames(ALZWORD) <- colnames(ALZWORD,do.NULL=FALSE) | ||
| 196 | ALZWORD <- chngrownm(ALZWORD)[-1,] | ||
| 197 | ALZWORD <- ALZWORD%>% | ||
| 198 | as.data.frame()%>% | ||
| 199 | dplyr::select(-starts_with("col")) | ||
| 200 | |||
| 201 | ##Reorganizing information within the columns | ||
| 202 | ALZWORDF <- cinfo(ALZWORD) | ||
| 203 | |||
| 204 | |||
| 205 | #Working with Actual Data part of file | ||
| 206 | alzdat <- alz %>% | ||
| 207 | read_delim(delim="\t",col_names=TRUE,comment = "!",skip=1) | ||
| 208 | ALZDAT <- t(alzdat[,-1]) | ||
| 209 | rownames(ALZDAT)=NULL | ||
| 210 | |||
| 211 | ##Is there a clean version of the GPL file available? | ||
| 212 | gplnum <- strsplit(genena,"[\\|/]") %>% | ||
| 213 | .[[1]] %>% | ||
| 214 | .[length(.)] %>% | ||
| 215 | gsub("\\D","",.) | ||
| 216 | clfileex <- sum(grepl(paste0("Clean_GPL",gplnum),list.files())) | ||
| 217 | if(clfileex >= 1){ | ||
| 218 | #use the clean version | ||
| 219 | geneIDNam <- paste0("Clean_GPL",gplnum,".txt") %>% | ||
| 220 | read_delim(delim="\t",col_names = c("ID","Symbol"), comment = "!") | ||
| 221 | |||
| 222 | } | ||
| 223 | if(clfileex == 0){ | ||
| 224 | ##Lets Create a clean version | ||
| 225 | |||
| 226 | ##Gene ID to Gene Name | ||
| 227 | if(soft == TRUE){ | ||
| 228 | #Check to see if there is already a file containing information on soft files | ||
| 229 | fileex <- sum(grepl("GPL_ID_LOC.txt",list.files())) | ||
| 230 | if(fileex == 1){ | ||
| 231 | #Check to see if this GPL soft file has been used before | ||
| 232 | IDF <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | ||
| 233 | .$GPL_FILE_NUM%>% | ||
| 234 | grepl(gplnum,.) %>% | ||
| 235 | sum() | ||
| 236 | if(IDF == 1){ | ||
| 237 | IDLOCAL <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | ||
| 238 | .$GPL_FILE_NUM%>% | ||
| 239 | grep(gplnum,.) | ||
| 240 | idlocgpl <- read_delim("GPL_ID_LOC.txt",delim = "\t",col_names = TRUE) %>% | ||
| 241 | .$LOC_ID %>% | ||
| 242 | .[IDLOCAL] | ||
| 243 | geneIDNam <- genena %>% | ||
| 244 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idlocgpl) %>% | ||
| 245 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | ||
| 246 | } | ||
| 247 | if(IDF == 0){ | ||
| 248 | #No information on this particular GPL file | ||
| 249 | idLOCGPL <- genena %>% | ||
| 250 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | ||
| 251 | t(.) %>% | ||
| 252 | grep("^ID\\s*$",.) %>% | ||
| 253 | -1 | ||
| 254 | cbind(as.integer(gplnum),as.integer(idLOCGPL)) %>% | ||
| 255 | cat(file="GPL_ID_LOC.txt",sep = "\t", fill = TRUE, append = TRUE) | ||
| 256 | geneIDNam <- genena %>% | ||
| 257 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | ||
| 258 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | ||
| 259 | } | ||
| 260 | } | ||
| 261 | if(fileex == 0){ | ||
| 262 | #We must create a file that we can access for later use | ||
| 263 | idLOCGPL <- genena %>% | ||
| 264 | read_delim(delim="\t",col_names = FALSE, comment = "!", n_max = 1000) %>% | ||
| 265 | t(.) %>% | ||
| 266 | grep("^ID\\s*$",.) %>% | ||
| 267 | -1 | ||
| 268 | Firstval <- cbind(as.integer(gplnum),as.integer(idLOCGPL)) | ||
| 269 | colnames(Firstval) <- c("GPL_FILE_NUM","LOC_ID") | ||
| 270 | write.table(Firstval,file = "GPL_ID_LOC.txt", sep = "\t",row.names = FALSE, col.names = TRUE) | ||
| 271 | geneIDNam <- genena %>% | ||
| 272 | read_delim(delim="\t",col_names = TRUE, comment = "!", skip = idLOCGPL) %>% | ||
| 273 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | ||
| 274 | } | ||
| 275 | } | ||
| 276 | if(soft == FALSE){ | ||
| 277 | geneIDNam <- genena %>% | ||
| 278 | read_delim(delim="\t",comment = "#")%>% | ||
| 279 | dplyr::select(.,ID,grep("Symbol|^ORF\\s*$|^gene_assignment\\s*$",colnames(.))) | ||
| 280 | } | ||
| 281 | |||
| 282 | ##Labeling the gene IDs without names | ||
| 283 | geneIDNam <- NAFIXING(geneIDNam) | ||
| 284 | |||
| 285 | ##remove the whitespace | ||
| 286 | geneIDNam <- t(rbind(str_trim(t(geneIDNam)[1,]),str_trim(t(geneIDNam)[2,]))) | ||
| 287 | |||
| 288 | ##Here is the clean version | ||
| 289 | write.table(geneIDNam,file = paste0("Clean_GPL",gplnum,".txt"),sep = "\t",row.names = FALSE, col.names = FALSE) | ||
| 290 | } | ||
| 291 | |||
| 292 | |||
| 293 | |||
| 294 | ##Changing the gene ID to gene name | ||
| 295 | ALZDAT1 <- cgeneID(t(geneIDNam),t(alzdat)) | ||
| 296 | colnames(ALZDAT) = ALZDAT1[1,] | ||
| 297 | |||
| 298 | |||
| 299 | ##Adjusting the column names aka the gene names | ||
| 300 | colnames(ALZDAT) <- gcnames(ALZDAT) | ||
| 301 | |||
| 302 | |||
| 303 | #Full RAW Data | ||
| 304 | Fullalzdwr <- ALZDAT %>% | ||
| 305 | as.data.frame() %>% | ||
| 306 | cbind(ALZWORDF,.) | ||
| 307 | |||
| 308 | |||
| 309 | #Raw file is output | ||
| 310 | nfnaex <- strsplit(alz,"[\\]") %>% | ||
| 311 | .[[1]] %>% | ||
| 312 | .[length(.)] %>% | ||
| 313 | gsub("\\D","",.) %>% | ||
| 314 | c("GSE",.,"aftexcel.txt") %>% | ||
| 315 | paste(collapse = "") | ||
| 316 | write.table(t(Fullalzdwr), file = nfnaex, sep = "\t") | ||
| 317 | |||
| 318 | |||
| 319 | #Now for the discretization part | ||
| 320 | ##get the wordy part again | ||
| 321 | rawword <- t(ALZWORDF) | ||
| 322 | |||
| 323 | ##where is ID_REF located | ||
| 324 | hereim <- grep("ID_REF",rawword[,1]) | ||
| 325 | |||
| 326 | ##Subject Names GSM... | ||
| 327 | subjnam <- rawword[hereim,] | ||
| 328 | |||
| 329 | ##Getting the names for the rows | ||
| 330 | namedarows <- rownames(rawword)[-hereim] %>% | ||
| 331 | as.data.frame() | ||
| 332 | RAWWORD <- rawword[-hereim,] %>% | ||
| 333 | as.data.frame() %>% | ||
| 334 | bind_cols(namedarows,.) | ||
| 335 | z <- 1 | ||
| 336 | naroww <- as.data.frame(rep(0,dim(RAWWORD)[1]),stringsAsFactors = FALSE) | ||
| 337 | for(z in 1:dim(RAWWORD)[1]){ | ||
| 338 | naroww[z,1] <- as.integer(sum(is.na(RAWWORD[z,]))) | ||
| 339 | z <- z + 1 | ||
| 340 | } | ||
| 341 | |||
| 342 | colnames(naroww) <- "ROW_NAs" | ||
| 343 | RAWWORD <- bind_cols(RAWWORD,naroww) | ||
| 344 | |||
| 345 | |||
| 346 | roALZna <- t(ALZDAT) %>% | ||
| 347 | rownames(.) %>% | ||
| 348 | as.data.frame(.) | ||
| 349 | colnames(roALZna) <- "ID_REF" | ||
| 350 | |||
| 351 | RAWDAT <- t(ALZDAT) %>% | ||
| 352 | as.data.frame(.) | ||
| 353 | colnames(RAWDAT) <- NULL | ||
| 354 | rownames(RAWDAT) <- NULL | ||
| 355 | |||
| 356 | RAWDAT2 <- RAWDAT %>% | ||
| 357 | cbind(roALZna,.) %>% | ||
| 358 | dplyr::arrange(.,ID_REF) | ||
| 359 | |||
| 360 | ##Editing the file for R processing | ||
| 361 | RAWDATID <- RAWDAT2[,1] %>% | ||
| 362 | as.matrix(.) | ||
| 363 | |||
| 364 | RAWDATNUM <- RAWDAT2[,-1] %>% | ||
| 365 | mapply(.,FUN = as.numeric) %>% | ||
| 366 | t(.) | ||
| 367 | |||
| 368 | ##Consolidating genes with the same name | ||
| 369 | ###create empty matrix of size equal to tabRDATID | ||
| 370 | tabRDATID <- table(RAWDATID) | ||
| 371 | NuRDATN <- matrix(0, nrow = dim(RAWDATNUM)[1], ncol = length(tabRDATID)) | ||
| 372 | j <- 1 | ||
| 373 | for(j in 1:length(tabRDATID)){ | ||
| 374 | |||
| 375 | ##Putting the ones without duplicates in their new homes | ||
| 376 | if(tabRDATID[j] == 1){ | ||
| 377 | NuRDATN[,j] <- RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])] | ||
| 378 | } | ||
| 379 | ##Averaging duplicates and putting them in their new homes | ||
| 380 | if(tabRDATID[j] > 1){ | ||
| 381 | NuRDATN[,j] <- rowMeans(RAWDATNUM[,which(RAWDATID==rownames(tabRDATID)[j])],na.rm = TRUE) | ||
| 382 | } | ||
| 383 | j <- j + 1 | ||
| 384 | } | ||
| 385 | |||
| 386 | ##Scaling the Data | ||
| 387 | scrawdat <- NuRDATN%>% | ||
| 388 | scale() | ||
| 389 | attr(scrawdat,"scaled:center") <- NULL | ||
| 390 | attr(scrawdat,"scaled:scale") <- NULL | ||
| 391 | colnames(scrawdat) <- rownames(tabRDATID) | ||
| 392 | |||
| 393 | ##Discretized the Data | ||
| 394 | dialzdat <- scrawdat %>% | ||
| 395 | dndat(.) %>% | ||
| 396 | t()%>% | ||
| 397 | as.data.frame(.) | ||
| 398 | colnames(dialzdat) <- rownames(RAWDATNUM) | ||
| 399 | |||
| 400 | ##setting "ID_REF" as a new variable | ||
| 401 | geneNAM <- as.data.frame(as.matrix(rownames(dialzdat),ncol=1)) | ||
| 402 | colnames(geneNAM) <- "ID_REF" | ||
| 403 | rownames(dialzdat) <- NULL | ||
| 404 | dialzdat <-bind_cols(geneNAM,dialzdat) | ||
| 405 | |||
| 406 | ##NAs in a column | ||
| 407 | x <- 2 | ||
| 408 | nacol <- as.data.frame(t(rep(0,dim(dialzdat)[2])),stringsAsFactors = FALSE) | ||
| 409 | nacol[1,1] = "COL_NAs" | ||
| 410 | for(x in 2:dim(dialzdat)[2]){ | ||
| 411 | nacol[1,x] <- as.integer(sum(is.na(dialzdat[,x]))) | ||
| 412 | x <- x + 1 | ||
| 413 | } | ||
| 414 | colnames(nacol) <- colnames(dialzdat) | ||
| 415 | dialzdat<-bind_rows(dialzdat,nacol) | ||
| 416 | |||
| 417 | ##NAs in a row | ||
| 418 | y <- 1 | ||
| 419 | narowd <- as.data.frame(rep(0,dim(dialzdat)[1]),stringsAsFactors = FALSE) | ||
| 420 | for(y in 1:dim(dialzdat)[1]){ | ||
| 421 | narowd[y,1] <- as.integer(sum(is.na(dialzdat[y,]))) | ||
| 422 | y <- y + 1 | ||
| 423 | } | ||
| 424 | colnames(narowd) <- "ROW_NAs" | ||
| 425 | dialzdat <- bind_cols(dialzdat,narowd) | ||
| 426 | colnames(dialzdat)[2:(dim(dialzdat)[2]-1)] <- subjnam | ||
| 427 | colnames(RAWWORD) <- colnames(dialzdat) | ||
| 428 | ##converting to character so that the clinical can be brought together with discrete data | ||
| 429 | k <- 2 | ||
| 430 | for(k in 2:dim(dialzdat)[2]-1){ | ||
| 431 | dialzdat[,k] <- as.character(dialzdat[,k]) | ||
| 432 | k <- k + 1 | ||
| 433 | } | ||
| 434 | #The End the full data | ||
| 435 | Dscrtalzdw <- bind_rows(RAWWORD,dialzdat) | ||
| 436 | |||
| 437 | #Produces Discrete file | ||
| 438 | nfnaex <- strsplit(rawdat,"[\\|/]") %>% | ||
| 439 | .[[1]] %>% | ||
| 440 | .[length(.)] %>% | ||
| 441 | gsub("\\D","",.) %>% | ||
| 442 | c("GSE",.,"dscrt.txt") %>% | ||
| 443 | paste(collapse = "") | ||
| 444 | write.table(Dscrtalzdw, file = nfnaex, sep = "\t",col.names = TRUE,row.names = FALSE) | ||
| 445 | |||
| 446 |